33. A Counterexample to a Conjecture By P. Erdös

By G. M. Rassias, J. M. Rassias, and T. M. Rassias
Department of Mathematics, University of California at Berkeley, Berkeley, California 94720, U.S.A.

(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1977)

1. Ch. Pommerenke [4] proved the following theorem. Let $f(z)$ $=z^{n}+a_{1} z^{n-1}+a_{2} z^{n-2}+\cdots+a_{n-1} z+a_{n}$ be a polynomial of degree n with some $a_{j} \neq 0$. Assume that the region $E_{f}=\{z \in C:|f(z)| \leqq 1\}$ is connected, where \boldsymbol{C} stands for the field of complex numbers. Then

$$
\max _{z \in E_{f}}\left|f^{\prime}(z)\right|<\frac{e n^{2}}{2}
$$

P. Erdös [5] reviewing Pommerenke's paper conjectured that

$$
\max _{z \in E_{f}}\left|f^{\prime}(z)\right|<\frac{n^{2}}{2}
$$

is also true and it is best possible. Erdös reposed his conjecture as a problem in [2]. As it appears in [3] Erdös' conjecture was unsolved until the year 1972 and to the best of our knowledge it is open until now. The purpose of this paper is to give a counterexample to Erdös' conjecture. It seems to us that this gives some information concerning the famous coefficient conjecture of L. Bieberbach [1], [6], [7].
2. Counterexample to Erdös' conjecture. Let $T_{n}(z)$ be the Chebyshev polynomial of degree n, defined by $T_{n}(z)=2 \cos n \theta$, where $z=2 \cos \theta$, and $n=0,1,2,3, \cdots$. This is a complex polynomial of a real variable and has n real zeros in the line segment $[-2,2]$ and -2 $\leq T_{n}(z) \leq 2$ for $-2 \leq z \leq 2$. The recursion formula, $T_{n+1}(z)=z T_{n}(z)$ $-T_{n-1}(z)$, which is valid since $\cos (n+1) \theta+\cos (n-1) \theta=2 \cos n \theta \cos \theta$, allows us to write the following sequence of polynomials: $T_{0}(z)=2$, $T_{1}(z)=z, T_{2}(z)=z^{2}-2, T_{3}(z)=z^{3}-3 z, T_{4}(z)=z^{4}-4 z^{2}+2$ and in general

$$
T_{n}(z)=z^{n}+\sum_{m=1}^{[n / 2]}(-1)^{m} \frac{n}{m}\binom{n-m-1}{m-1} z^{n-2 m}
$$

is a complex inhomogeneous polynomial in a real variable and of degree n. Consider now $f(z)=\lambda^{n} T_{n}(z / \lambda)$. This is a monic inhomogeneous polynomial of degree n and in fact $-2 \lambda^{n} \leq f(z) \leq 2 \lambda^{n}$ for $-2 \lambda \leq z$ $\leq 2 \lambda$. Take $\lambda=1 / 2^{1 / n}$. Then $-1 \leq f(z) \leq 1$ for $-2 / 2^{1 / n} \leq z \leq 2 / 2^{1 / n}$. Because of the fact that $T_{n}(z)=T_{n}(2 \cos \theta)=2 \cos n \theta$, it implies that $T_{n}^{\prime}(2 \cos \theta)=n(\sin n \theta / \sin \theta)$. Thus, $\max \left\{\left|T_{n}^{\prime}(z)\right|:-2 / 2^{1 / n} \leq z \leq 2 / 2^{1 / n}\right\}=n^{2}$ because $\max \left\{(\sin n \theta / \sin \theta):-2 / 2^{1 / 2} \leq z \leq 2 / 2^{1 / n}\right\}=n$. However, $f(z)$ $=\lambda^{n} T_{n}(z / \lambda)$. Therefore $f^{\prime}(z)=\lambda^{n-1} T_{n}^{\prime}(z / \lambda)$ and so $\max \left\{\left|f^{\prime}(z)\right|:-2 \lambda \leq z\right.$ $\leq 2 \lambda\}=\lambda^{n-1} n^{2}$. If we set $\lambda=1 / 2^{1 / n}$, then max $\left\{\left|f^{\prime}(z)\right|:-2 / 2^{1 / n} \leq z \leq 2 / 2^{1 / n}\right\}$
$=n^{2} / 2 \cdot 2^{1 / n}>n^{2} / 2$.
Claim that $E_{f}=\{z \in C:|f(z)| \leq 1\}$ is a connected subset of C. Assume that this is not the case. Then $E_{f}=A \cup B$ where A, B are disjoint, closed and nonempty subsets of C. It follows that $|f(z)|=1$ when $z \in \partial A$ (the topological boundary of A) by the analyticity of f. Thus if f has no zeros in A then the minimum modulus principle implies that $|f(z)|=1$ in A and which implies that $f(z)=$ constant on C, which is a contradiction. Hence, f has a zero $x_{1} \in A$ and in fact this is a real zero. The same reasoning shows that f has a real zero, x_{2} in B. Then the closed line segment $\left[x_{1}, x_{2}\right]$ with end points x_{1}, x_{2} is contained in $E_{f}=A \cup B$, since $|f(z)| \leq 1$ on the closed real line segment between any two zeros of f which again is a contradiction, for the closed line segment $\left[x_{1}, x_{2}\right]$ is connected and $x_{1} \in A, x_{2} \in B$ where A, B are disjoint and closed sets in C. Thus E_{f} is connected. Hence we have given an inhomogeneous polynomial $f(z)$ of degree n with E_{f} connected subset of C but $\max _{z \in E_{f}}\left|f^{\prime}(z)\right|>n^{2} / 2$.
3. Remark. For a better understanding of the set E_{f} we construct the following figures, as the degree n of the polynomial $f(z)$ varies. Let $n=2$. Then $T_{2}(z)=z^{2}-2, f(z)=z^{2}-1$. Consider $u(z)$ $=\log |z-1|+\log |z+1|$. Then $u(z)$ is a harmonic function on $C-\{-1,1\}$. It follows that $u(z)=0$ on the lemniscate and $u(z)=\infty$ as $|z|=\infty$. Therefore $u(z)>0$ outside the lemiscate. It is clear that $u(z)<0$ inside the lemniscate. The picture of E_{f} is the shadowed region in Fig. 1, and $\{z \in C:|f(z)|=1\}=\{-2 \lambda, 0,2 \lambda\}$.

E_{f}
 Fig. 1

Similarly, working for $n=3$ we find for E_{f} the shadowed region given by Fig. 2, and for $n=4$, we find for E_{f} the shadowed region given by Fig. 3. In a similar manner we obtain the figures for E_{f}, as $n \geq 5$.
4. Open problem. Find the least upper bound of the $\max _{z \in E_{f}}\left|f^{\prime}(z)\right|$?

Acknowledgment. We would like to express our thanks to Professor D. E. Sarason for helpful discussions.

Fig. 2

Fig. 3

References

[1] L. Bieberbach: Über die Koeffizientem derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. Preuss. Akad. Wiss. Sitzungsb., 944-955 (1916).
[2] P. Erdös: Colloquium Mathematicum 15 (1966), p. 320, Problem \#564.
[3] -: Colloquium Mathematicum, Index des Volumes 1-25, p. 59 (1972).
[4] Ch. Pommerenke: On the derivative of a polynomial. Michigan Mathematical Journal, 6, 373-375 (1959).
[5] -: Mathematical Reviews. American Mathematical Society, 22, \#95, January 1961 (review by P. Erdös).
[6] G. Springer: The coefficient problem for schlict mappings of the exterior of the unit circle. Trans. Amer. Math. Soc., 70, 421-450 (1951).
[7] W. A. Veech: A Second Course in Complex Analysis. W.A. Benjamin, Inc., New York, Amsterdam (1967).

