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On the Mixed Problem with d’Alembertian
in a Quarter Space
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Introduction. In this note we consider the mixed problem

(V?u=_(D--D--,: D2j)u=f(t, x, y) in (0, oo) R,

IBu=-(Dx + bo(t, y)Dt + ,:I bj(t, y)Dvj+ c(t, Y))Ulx=o
(0.1) --g(t, y) on (0, oo) Rn-l,

|Dtult=o=U(X, y) on
ul__o=Uo(X, y) on R,

where Dr=--i/3t, D=--i/3x, ..., c(t, y) e (+ R-) and b(t, y)
(]--0, 1, ., n-- 1) are real-valued functions belonging to _(/+ R-).
Let us say that (0.1) is C well-posed when there exists a unique solu-
tion u(t, x, y) in C(/+ /?.) for any (u0, u,f g) e C(+) C(+)
C(/+ /) C(/+ R-) satisfying the compatibility condition of

infinite order.
When b0, ..., b_ and c are all constant, by Sakamoto [4] we know

a necessary and sufficient condition for C well-posedness. If b0<l
(0.1) is C well-posed, and in the case n>__3 it is so only if b0<l.
Agemi and Shirota in [1] studied (0.1) precisely when n=2, c=0 (b is
constant). Tsuji in [6] treated the case that b0, ..., b_ and c are vari-
able, and showed the existence of the solution in the Sobolev space.
Furthermore, he stated that the Lopatinski condition must be satified
at any point if (0.1) is C well-posed. Ikawa [2] investigated (0.1) in
a general domain in the case n 2, b0 0.

In our note we shall study C well-posedness and the propagation
speed of (0.1). Consider the following equation in 2"

,/1--= b0(t, y)+lb’(t, Y)I 2 (b’-(b,..., bn_)).
Then, if bo(t, y)< 1 this equation has a positive root or no real root. In
the former ease we denote the positive root by 20(t, y), and in the latter
ease set 20(t, y)= 1.

Theorem 1. If sup bo(t,y)<l, then (0.1) is C well-posed
(t,y) eR XR

and has a finite propagation speed less than sup 20(t, y)-l.
(t,y)eR XR

For a constant v> 0 we set C(to, x0, Y0) {(t, x, y)" (t- to)V + ((x-- x0)

1) N(M) denotes the set {h(z)eC(M); Ihl,= F. [Dgh(z)l<c for m=0,1,...}.
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/ly--y01)l/0}. Fix the point (to, Xo, Yo), and let us have constants v,
(0) such that u(t, x, y)=O on C(to, Xo, Yo) (Oto--t, xO} or any
ue C(++) satisfying u--O on C{Oto-t,x>O},
-’-Dtu[t=to_--O 012 Cv(t=to--,xO} and Bu--O on C(Oto-t3, x
-0}. Then we call the infimum of the v the propagation speed at
(to, x0, Y0).

Theorem 2. Let sup bo(t,y)l. The propagation speed

of (0.1) at any (to, O, Yo) is not smaller than o(to, yo) -1.
The author wishes to express his sincere gratitude to Prof. M.

Ikawa for his many useful suggestions.
1o Reduction to the equation on the boundary. Let us prove

Theorem 1. We assume that b(z)=(bo(z), ..., b_(z)) and c(z) (z=(t, y))
are constant when z] is large. The general case is reduced to this case.
Let b(z)=b and c(z)=c for Izl>=Zo (Zo is a large constant). Solving the
Cauchy problem, we can assume in the problem (0.1) that Uo--u=O,f
=0. Then the compatibility condition of infinite order implies that
every D[g(+O, y)(]=0, 1,...) equals zero. Denote by CT(R) the set
o C functions in R whose support lies in {to=< t} for some to e R. We
know that the Dirichlet problem

in RR+,
w =o h(z) on R

has a unique solution w(z, x) in CT(R 1+) for any h(z) e CT(Rn) and has
a finite propagation speed, which equals one. We set (for h e CT(R))

Th=Bw.)

Theorem 1.1. There exists a unique solution h of the equation
Th=g in CT(R) for any g e CT(R), and it has a finite propagation
speed less than sup 20(z)-.

zR

This theorem yields Theorem 1 in Introduction.
2. Proof of Theorem 1.1. We denote by H,r(R)( e R, m e R)

the unctional space {u(z) "e-rZu(z) e H(R)}. Let us define the Laplace-
Fourier transformation F(, e R) by

F[u]=()=[ e-(-)zu(z)dz (--a--i,), u e C(R),

and denote by the inverse transformation

(i.e. [f](z)=(2)-e ef(--i)da).
The norm (h,T of H,,T(R) is defined by

( },r (2)- a-- i, ]2 itS(a_ i.)12 da (7- 0).

Proposition 2.1. We have r2-j=l-2=k=O for (v,,) e R/

2) Let the coefficients of B be extended smoothly to t0.
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I" (l {.(, a) (e ) R+;
Corollary. If (r,]) e R--i[ (={[=(r,) e R; >11}), the equa-

tion r--=i.--=0 in has a root $+(r, ) with a positive imaginary
part and a one with negative imaginary part (cf. 3 of Sakamoto [4]).

Let us set (for r e and h e C(R))
Rrh=Fr[(+(a-- ir) + b (a-- ir) + c)(a-,iy)],
Rh=F_r[(+(a-i) + b (a + i) + D,. b + e)(a+ i)].

Then we have Th=Rrh ( e ) for h e C(R) and have
(Rrh, g)= (h, Rrg), h, g e C(R) ( e ).

Lemma 2.1. Le$ m e R and S be any compac se of ={=(r,)
e R r>(sup 0(z)-)l }. There is a constant ro(m,S) such that if
ro(m,S) and y e Ks={r=Z" e S, z>O} the following estimates hold"

(i) ]rl(h),rC(Rh),, h e C(R),
(ii) lyl(h)_,_rC(Rh)_,_r, h e C(R).
This lemma is proved by means of the following lemma.
Lemma 2.2. Let S be a compact set in 2. Then there is a con-

stant ( O) such that
Im +(0 + b(z).Im3 IIm l, e R--iKs, z e R.

Proof. In view of the corollary of Proposition 2.1, we see that
(--Im , --Im +(0) F if e R--i. On the other hand, if y e

<0 and (r, ) F there is a small constant (>0) such that (b
+o)’r for any o(o e R, lw]=l). Therefore we have

Im +(0+(b-- Im /]Im ]) Im 0, e Rn--iKs, z e R.
Proof o Theorem 1.1. It suffices to show that for any g e H(R)

satisfying supp [g] c 2’ + z(z e R) there exists a solution h( e H,(R),
7e2) of R;h=g whose support lies in 2’+z. Here 2’ is the set
{r’ e R; r’.r>Oforanyr e 2}. Lemma 2.1 yields a solution hr e H,(R)
satisfying Rh=g ( e 2 and ]71 is sufficiently large). Set

f=F[(+(O+.+e)f(O] (=a-ir).
Then we can write

;h;=(--b(z)).D,h; +(C--c(z))h; +g.
The support of the right term lies in ’ +( e R). Noting that 3 and
e are constant, we see supp [h r] c’+ $ by Paley-Wiener’s theorem (cf.
Sakamoto [4]). Therefore h e H,r(R). Hence we have

C(g),r for any large Iri(r e 2), which implies supp [h;]c2’ +z.
3. Sketch of proof of Theorem 2. Theorem 2 is proved in the

same way as in the proof of Theorem 4.1 of [5]. The idea of the proof
is suggested by Kajitani [3] and Appendix of Ikawa [2]. Assume that
there are positive constants and v (<0(t0, Y0)-9 such that u(t, x, y)=0
on C {O<t0-t<, x>O} for any u e C( X) satisfying u=O on
C{O<to-t<,x>O}, ultto_=Dtult=to_=O on C{t=to--#,x>O}
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and Bu=O on C{Oto-t,x--O}. In order to show that this is a
contradiction, we have only to construct an asymptotic solution

v et(t,x,u(t, x, Y)=:0 V)v=(t, x, y)(ik)-=(k>O) such that [:]u evx
(ik)-x near Co{O<=to-t<__$,x>=O}, uxlt=to_=Dtuxlt=to_-O on Co{t
=to--$,x>O},BuN=O on C{O<to--t<$,x=O} and Vo(to, O, yo)#O.
Therefore we have the eiconal equation with B=0 and the transport
equation with Bv==O. From the latter we get the equation for v=l=0.
Let (1, a)( e R,)) be the direction of the characteristic curve of this
equation at (to, Y0). Then, choosing the phase function appropriate-
ly, we have [al=0(t0, y0) -. Thus the required asymptotic solution is
obtained.
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