90. On the Adiabatic Theorem for the Hamiltonian System of Differential Equations in the Classical Mechanics. III

By Takashi Kasuga
Department of Mathematics, University of Osaka
(Comm. by K. Kunugi, m.J.A., July 12, 1961)

6. We consider the Hamiltonian system containing a parameter $\lambda(>0)$

$$
\begin{equation*}
d p / d t=-\lambda \partial H / \partial q(p, q, t), d q / d t=\lambda \partial H / \partial p(p, q, t) \tag{14}
\end{equation*}
$$

in D. If $\left(p^{0}, q^{0}, t^{0}\right) \in D$ and $\lambda>0$, there is a unique solution of (14) in D passing through (p^{0}, q^{0}, t^{0}) and prolonged as far as possible to the both directions of the time t, by the regularity of $H(p, q, s)$ in Assumption $1 .{ }^{1)}$ We denote it by

$$
\begin{equation*}
p=\tilde{\mathfrak{p}}\left(t, p^{0}, q^{0}, t^{0}, \lambda\right), q=\tilde{\mathfrak{q}}\left(t, p^{0}, q^{0}, t^{0}, \lambda\right) . \tag{15}
\end{equation*}
$$

For a fixed $\left(p^{0}, q^{0}, t^{0}\right) \in D$ and a fix $\lambda(>0), \tilde{\mathfrak{p}}\left(t, p^{0}, q^{0}, t^{0}, \lambda\right), \tilde{q}\left(t, p^{0}, q^{0}, t^{0}, \lambda\right)$ are defined on a subinterval of the time interval $a \leqq t \leqq b$ which may be open, closed or half-open according to ($p^{0}, q^{0}, t^{0}, \lambda$). ${ }^{1)}$

Since $\partial \widetilde{Y} / \partial s$ is continuous on \bar{D} and \bar{D} is compact, there is a number $M(>0)$ such that

$$
\begin{equation*}
|\partial \widetilde{\mathfrak{F}} / \partial s| \leqq M \quad \text { on } D \tag{16}
\end{equation*}
$$

Theorem 3. Let a^{\prime} and b^{\prime} be two numbers such that $a \leqq a^{\prime}<b^{\prime}$ $\leqq b$ and $\left(b^{\prime}-a^{\prime}\right)<\left(J_{2}^{*}-J_{1}^{*}\right) /(2 M)$ and let us put $J_{2}=J_{2}^{*}-M\left(b^{\prime}-a^{\prime}\right)$, $J_{1}=J_{1}^{*}+M\left(b^{\prime}-a^{\prime}\right)$. Then the solution of (14) passing through (p^{0}, q^{0}, a^{\prime}) where $\left(p^{0}, q^{0}\right) \in I\left(J_{1}, J_{2}, a^{\prime}\right)$ can be prolonged in D to the time interval $a^{\prime} \leqq t \leqq b^{\prime}$ for every $\lambda(>0)$.

Proof. Let β be the least upper bound of β^{\prime} such that the solution in D of (14), $p=\tilde{\mathfrak{p}}\left(t, p^{0}, q^{0}, a^{\prime}, \lambda\right), q=\tilde{\mathfrak{q}}\left(t, p^{0}, q^{0}, a^{\prime}, \lambda\right)$ for a fixed $\left(p^{0}, q^{0}\right) \in I\left(J_{1}, J_{2}, a^{\prime}\right)$ and a fixed $\lambda>0$, can be defined for the time interval $a^{\prime} \leqq t<\beta^{\prime}$ and such that $a^{\prime}<\beta^{\prime} \leqq b^{\prime}$. Then $a^{\prime}<\beta \leqq b^{\prime}$ and this solution in D can be defined on the the time interval $a^{\prime} \leqq t<\beta$. Since $\partial H / \partial p, \partial H / \partial q$ are bounded on D by their continuity on the compact set \bar{D}, the functions $\tilde{\mathfrak{p}}_{i}\left(t, p^{0}, q^{0}, a^{\prime}, \lambda\right) \tilde{\mathrm{q}}_{i}\left(t, p^{0}, q^{0}, a^{\prime}, \lambda\right)(i=1, \cdots, n)$ of t representing a solution of (14) in D, are uniformly continuous on the interval $a^{\prime} \leqq t<\beta$. Hence the limits

$$
\begin{aligned}
& \tilde{\mathfrak{p}}\left(t, p^{0}, q^{0}, a^{\prime}, \lambda\right) \rightarrow p^{\prime}(t \rightarrow \beta-0) \\
& \tilde{\mathfrak{q}}\left(t, p^{0}, q^{0}, a^{\prime}, \lambda\right) \rightarrow q^{\prime}(t \rightarrow \beta-0)
\end{aligned}
$$

exist and $\left(p^{\prime}, q^{\prime}, \beta\right) \in \bar{D}$.
We shall sometimes abbreviate $\tilde{\mathfrak{p}}\left(t, p^{0}, q^{0}, a^{\prime}, \lambda\right)$ and $\tilde{\mathfrak{q}}\left(t, p^{0}, q^{0}, a^{\prime}, \lambda\right)$

1) Cf. E. Kamke [1, pp. 135-136 and pp. 137-142].
as $\tilde{\mathfrak{p}}$ and \tilde{q} in this proof of Theorem 3.
Now for $a^{\prime} \leqq t<\beta$, we have ${ }^{2)}$

$$
\begin{aligned}
\frac{d}{d t} & \widetilde{\Im}\left\{\tilde{\mathfrak{p}}\left(t, p^{0}, q^{0}, a^{\prime}, \lambda\right), \tilde{\mathfrak{q}}\left(t, p^{0}, q^{0}, a^{\prime}, \lambda\right), t\right\} \\
& =\frac{d}{d t} \Im\{H(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t), t\} \\
& =\frac{\partial \mathfrak{Y}}{\partial E}\{H(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t), t\} \frac{d}{d t} H(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t)+\frac{\partial \mathfrak{\Im}}{\partial s}\{H(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t), t\} \\
& =\frac{\partial \mathfrak{Y}}{\partial E}\{H(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t), t\} \frac{\partial H}{\partial s}(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t)+\frac{\partial \mathfrak{J}}{\partial s}\{H(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t), t\} \\
& =\frac{\partial \widetilde{\mathfrak{Y}}}{\partial s}(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t)
\end{aligned}
$$

since we can easily verify that

$$
\frac{d}{d t} H(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t)=\frac{\partial H}{\partial s}(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t)
$$

for the solution ($p=\tilde{\mathfrak{p}}, q=\tilde{q}$) of (14). Hence by (16) we have

$$
\begin{aligned}
& \left|\widetilde{\mathfrak{Y}}\left(p^{\prime}, q^{\prime}, \beta\right)-\widetilde{\mathfrak{Y}}\left(p^{0}, q^{0}, a^{\prime}\right)\right|=\left|\int_{a^{\prime}}^{\beta} \frac{d}{d t} \tilde{\mathfrak{J}}(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t) d t\right| \\
& \quad=\left|\int_{a^{\prime}}^{\beta} \frac{\partial \widetilde{\mathfrak{F}}}{\partial s}(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t) d t\right| \leqq M\left(\beta-a^{\prime}\right) \leqq M\left(b^{\prime}-a^{\prime}\right)
\end{aligned}
$$

Hence we have

$$
J_{2}^{*}=J_{2}+M\left(b^{\prime}-a^{\prime}\right)>\tilde{\Im}\left(p^{\prime}, q^{\prime}, \beta\right)>J_{1}-M\left(b^{\prime}-a^{\prime}\right)=J_{1}^{*}
$$

since $J_{2}>\tilde{\mathfrak{F}}\left(p^{0}, q^{0}, a^{\prime}\right)>J_{1}$ by $\left(p^{0}, q^{0}\right) \in I\left(J_{1}, J_{2}, a^{\prime}\right)$. Thus we have proved that $\left(p^{\prime}, q^{\prime}, \beta\right) \in D$ and that the solution $p=\tilde{p}\left(t, p^{0}, q^{0}, a^{\prime}, \lambda\right), q=\tilde{q}\left(t, p^{0}, q^{0}\right.$, a^{\prime}, λ) of (14) in D can be defined on the interval $a^{\prime} \leqq t \leqq \beta .{ }^{1)}$ If $a^{\prime} \leqq \beta$ $<b^{\prime}$, then $\left(p^{\prime}, q^{\prime}, \beta\right) \in D^{03}$ and the solution can be continued beyond $t=\beta .{ }^{1)}$ This contradicts the definition of β. Hence $\beta=b^{\prime}$. This completes the proof of Theorem 2.
7. When $a \leqq a^{\prime}<b^{\prime} \leqq b,\left(p^{0}, q^{0}\right) \in I\left(a^{\prime}\right)$ and $\lambda>0$, we define $\Delta\left(a^{\prime}, b^{\prime}\right.$, $\left.p^{0}, q^{0}, \lambda\right)$ as follows. We put
$\Delta\left(a^{\prime}, b^{\prime}, p^{0}, q^{0}, \lambda\right)=\max _{a^{\prime} \leq t \leq J}\left|\widetilde{\mathfrak{Y}}\left\{\tilde{\mathfrak{p}}\left(t, p^{0}, q^{0}, a^{\prime}, \lambda\right), \tilde{\mathfrak{q}}\left(t, p^{0}, q^{0} a^{\prime}, \lambda\right), t\right\}-\widetilde{\mathfrak{F}}\left(p^{0}, q^{0}, a^{\prime}\right)\right|$ if the solution $p=\tilde{p}\left(t, p^{0}, q^{0}, a^{\prime}, \lambda\right), q=\tilde{q}\left(t, p^{0}, q^{0}, a^{\prime}, \lambda\right)$ of (14) can be continued to $t=b^{\prime}$ in D and we put

$$
\Delta\left(a^{\prime}, b^{\prime}, p^{0}, q^{0}, \lambda\right)=+\infty
$$

if the above solution of (14) can not be continued to $t=b^{\prime}$ in D. When $a \leqq a^{\prime}<b^{\prime} \leqq b, \lambda>0$ and $\delta>0$, we denote the subset of $I\left(a^{\prime}\right)$, $\left\{\left(p^{0}, q^{0}\right) \mid\left(p^{0}, q^{0}\right) \in I\left(a^{\prime}\right), \Delta\left(a^{\prime}, b^{\prime}, p^{0}, q^{0}, \lambda\right)<\delta\right\}$ by $L\left(a^{\prime}, b^{\prime}, \lambda, \delta\right)$. We can easily

[^0]3) Cf. footnote 11) of Part II.
prove that $L\left(a^{\prime}, b^{\prime}, \lambda, \delta\right)$ is an open set in $R^{2 n}$ by the continuity of $\mathfrak{\Im}$ on D and by the theorems ${ }^{4)}$ on the dependence of the solutions of (14) in D on the initial conditions.

In the following, we denote the m-dimensional Lebesgue measure of a measurable set in R^{m} by $\mu_{m}[\quad]$.

Lemma 8. Let $a^{\prime}, b^{\prime}, J_{1}$ and J_{2} be the same with those in Theorem 3. Then for any fixed $\delta(>0), \mu_{2 n}\left[I\left(J_{1}, J_{2}, a^{\prime}\right)-L\left(a^{\prime}, b^{\prime}, \lambda, \delta\right)\right] \rightarrow 0(\lambda \rightarrow$ $+\infty$).

Proof. By Theorem 3, the solution $p=\tilde{p}\left(t, p^{0}, q^{0}, a^{\prime}, \lambda\right), q=\tilde{q}\left(t, p^{0}\right.$, $\left.q^{0}, a^{\prime}, \lambda\right)$ of (14) can be continued in D to $t=b^{\prime}$ if $\left(p^{0}, q^{0}\right) \in I\left(J_{1}, J_{2}, a^{\prime}\right)$.

Now we take any positive number ε. Then by Lemma 7, we can take a function $f_{0}(p, q, s) \in C_{0}^{1}\left(D^{0}\right)$ such that

$$
\left(\int_{D}\left|\left(H, f_{0}\right)-\frac{\partial \widetilde{\mathfrak{Y}}}{\partial s}\right|^{2} d p d q d s\right)^{\frac{1}{2}}<\frac{\varepsilon}{2}\left[\mu_{2 n+1}(D)\right]^{-\frac{1}{2}}
$$

Hence if we put $g_{0}(p, q, s)=\partial \widetilde{Y} / \partial s-\left(H, f_{0}\right)$ on D, then we have by Schwartz inequality

$$
\begin{equation*}
\int_{D}\left|g_{0}(p, q, s)\right| d p d q d s<\frac{\varepsilon}{2} . \tag{18}
\end{equation*}
$$

We have in the same way as in (17)

$$
\begin{align*}
\frac{d}{d t} & \widetilde{\Im}\left\{\tilde{\mathfrak{p}}\left(t, p^{0}, q^{0}, a^{\prime}, \lambda\right), \tilde{\mathfrak{q}}\left(t, p^{0}, q^{0}, a^{\prime}, \lambda\right), t\right\} \\
& =\frac{\partial \widetilde{\mathscr{Y}}}{\partial \mathrm{s}}\left\{\tilde{\mathfrak{p}}\left(t, p^{0}, q^{0}, a^{\prime}, \lambda\right), \tilde{\mathfrak{q}}\left(t, p^{0}, q^{0}, a^{\prime}, \lambda\right), t\right\} \tag{19}
\end{align*}
$$

for $a^{\prime} \leqq t \leqq b^{\prime}$ and $\left(p^{0}, q^{0}\right) \in I\left(J_{1}, J_{2}, a^{\prime}\right)$. We shall sometimes abbreviate $\tilde{\mathfrak{p}}\left(t, p^{0}, q^{0}, a^{\prime}, \lambda\right)$ and $\tilde{q}\left(t, p^{0}, q^{0}, a^{\prime}, \lambda\right)$ as \tilde{p} and \tilde{q} in this proof of Lemma 8. By (19) and the definition of $g_{0}(p, q, s)$, we get

$$
\begin{aligned}
& \left|\widetilde{\mathfrak{F}}\left\{\tilde{\mathfrak{p}}\left(t^{\prime}, p^{0}, q^{0}, a^{\prime}, \lambda\right), \tilde{\mathfrak{q}}\left(t^{\prime}, p^{0}, q^{0}, a^{\prime}, \lambda\right), t^{\prime}\right\}-\widetilde{\mathfrak{Y}}\left(p^{0}, q^{0}, a^{\prime}\right)\right| \\
& \quad=\left|\int_{a^{\prime}}^{t^{\prime}} \frac{d}{d t} \widetilde{\mathfrak{F}}(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t) d t\right|=\left|\int_{a^{\prime}}^{t^{\prime}} \frac{\partial \widetilde{\mathfrak{Y}}}{\partial s}(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t) d t\right| \leqq\left|\int_{a^{\prime}}^{t^{\prime}} g_{0}(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t) d t\right| \\
& \quad+\left|\int_{a^{\prime}}^{t^{\prime}}\left(H, f_{0}\right)(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t) d t\right|^{5)}
\end{aligned}
$$

Hence by the definition of $\Delta\left(a^{\prime}, b^{\prime}, p^{0}, q^{0}, \lambda\right)$, we have

$$
\begin{equation*}
\Delta\left(a^{\prime}, b^{\prime}, p^{0}, q^{0}, \lambda\right) \leqq \int_{a^{\prime}}^{u^{\prime}}\left|g_{0}(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t)\right| d t+\max _{a^{\prime} \leqslant \iota^{\prime} \leqslant v^{\prime}}\left|\int_{a^{\prime}}^{\iota^{\prime}}\left(H, f_{0}\right)(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t) d t\right| \tag{20}
\end{equation*}
$$

Now for any fixed $s\left(a^{\prime} \leqq s \leqq b^{\prime}\right)$ and for any fixed $\lambda(>0)$, the one-to-one mapping of $I\left(J_{1}, J_{2}, a^{\prime}\right)$ onto an open set $V(s, \lambda)$ in $I(s)$
4) Cf. E. Kamke [1, pp. 149-153].
5) $\left(H, f_{0}\right)(\tilde{p}, \tilde{q}, t)$ is the value of the Poisson bracket $\left(H, f_{0}\right)(p, q, s)$ for $p=\tilde{p}, q=\tilde{q}$, $s=t$.

$$
\left(p^{0}, q^{0}\right) \rightarrow\left\{\tilde{p}\left(s, p^{0}, q^{0}, a^{\prime}, \lambda\right), \tilde{q}\left(s, p^{0}, q^{0}, a^{\prime}, \lambda\right)\right\}
$$

is measure-preserving, since (14) is a Hamiltonian system (Theorem of Liouville). ${ }^{6)}$ Hence

$$
\begin{align*}
& \int_{I\left(J_{1}, J_{2}, a^{\prime}\right.}\left(\int_{a^{\prime}}^{b^{\prime}}\left|g_{0}(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t)\right| d t\right) d p^{0} d q^{0} \\
& \quad=\int_{a^{\prime}}^{b^{\prime}}\left(\int_{I\left(J_{1}, J_{2}, a^{\prime}\right)}\left|g_{0}(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t)\right| d p^{0} d q^{0}\right) d t \tag{21}\\
& \quad=\int_{a^{\prime}}^{b^{\prime}}\left(\int_{V(s, z)}\left|g_{0}(p, q, s)\right| d p d q\right) d s \\
& \quad \leqq \int_{D}\left|g_{0}(p, q, s)\right| d p d q d s
\end{align*}
$$

since $V(s, \lambda) \subset I(s)$ and $D=\{(p, q, s) \mid(p, q) \in I(s), a \leqq s \leqq b\}$.
On the other hand ${ }^{7)}$

$$
\begin{aligned}
\left(H, f_{0}\right)(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t) & =\frac{1}{\lambda} \frac{\partial f_{0}}{\partial s}(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t)-\frac{1}{\lambda}\left\{\frac{\partial f_{0}}{\partial s}(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t)-\lambda\left(H, f_{0}\right)(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t)\right\} \\
& =\frac{1}{\lambda} \frac{\partial f_{0}}{\partial s}(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t)-\frac{1}{\lambda} \frac{d}{d t} f_{0}(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t)
\end{aligned}
$$

since $\frac{d}{d t} f_{0}(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t)=-\lambda\left(H, f_{0}\right)(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t)+\frac{\partial f_{0}}{\partial s}(\tilde{\mathfrak{p}}, \tilde{q}, t)$ for the solution $p=\tilde{\mathfrak{p}}$, $q=\tilde{q}$ of (14) in D as can be easily verified. Hence for $a^{\prime} \leqq t^{\prime} \leqq b^{\prime}$

$$
\begin{aligned}
& \left|\int_{a^{\prime}}^{t^{\prime}}\left(H, f_{0}\right)(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t) d t\right| \leqq \frac{1}{\lambda}\left|\int_{a^{\prime}}^{t^{\prime}} \frac{\partial f_{0}}{\partial s}(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t) d t\right| \\
& \quad+\frac{1}{\lambda}\left|\int_{a^{\prime}}^{t^{\prime}} \frac{d}{d t} f_{0}(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t) d t\right| \leqq \frac{1}{\lambda} \int_{a^{\prime}}^{b^{\prime}}\left|\frac{\partial f_{0}}{\partial s}(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t)\right| d t \\
& \left.\left.\quad+\frac{1}{\lambda} \right\rvert\, f_{0} \tilde{\mathfrak{p}}\left(t^{\prime}, p^{0}, q^{0}, a^{\prime}, \lambda\right), \tilde{\mathfrak{q}}\left(t^{\prime}, p^{0}, q^{0}, a^{\prime}, \lambda\right), t^{\prime}\right\}-f_{0}\left(p^{0}, q^{0}, a^{\prime}\right) \mid .
\end{aligned}
$$

Now there is an M^{\prime} such that $\left|f_{0}\right|,\left|\partial f_{0} / \partial s\right| \leqq M^{\prime}$ on D since $f_{0} \in C_{0}^{1}\left(D^{0}\right)$. Therefore we have

$$
\begin{equation*}
\max _{a^{\prime} \leq \leq^{\prime} \leq 0^{\prime}}\left|\int_{a^{\prime}}^{t^{\prime}}\left(H, f_{0}\right)(\tilde{\mathfrak{p}}, \tilde{q}, t) d t\right| \leqq \frac{1}{\lambda}\left(\left(b^{\prime}-a^{\prime}\right)+2\right) M^{\prime} \tag{22}
\end{equation*}
$$

By (18), (20), (21) and (22), we get

$$
\int_{I\left(J_{1}, J_{2}, a^{\prime}\right)} \Delta\left(a^{\prime}, b^{\prime}, p^{0}, q^{0}, \lambda\right) d p^{0} d q^{0}
$$

$$
\leqq \frac{\varepsilon}{2}+\frac{1}{\lambda}\left\{\left(b^{\prime}-a^{\prime}\right)+2\right\} M^{\prime} \mu_{2 n}\left[I\left(J_{1}, J_{2}, a^{\prime}\right)\right] \leqq \frac{\varepsilon}{2}+\frac{\varepsilon}{2} \leqq \varepsilon \text { if } \lambda \geqq 2\left\{\left(b^{\prime}-a^{\prime}\right)+2\right\}
$$

$\times M^{\prime} \mu_{2 n}\left[I\left(J_{1}, J_{2}, a^{\prime}\right)\right] / \varepsilon$. Thus we have proved that

$$
\int_{I\left(J_{1}, J_{2}, a^{\prime}\right)} \Delta\left(a^{\prime}, b^{\prime}, p^{0}, q^{0}, \lambda\right) d p^{0} d q^{0} \rightarrow 0(\lambda \rightarrow+\infty)
$$

From this we can easily deduce the desired results. Q.E.D.

[^1]8. Now we state and prove a form of the adiabatic theorem.

Theorem 4. Under Assumptions 1, 2 and 3,

$$
\mu_{2 n}\left[I\left(J_{1}, J_{2}, a\right)-L(a, b, \lambda, \delta)\right] \rightarrow 0(\lambda \rightarrow+\infty)
$$

for any fixed J_{1}, J_{2}, δ such that $J_{2}^{*}>J_{2}>J_{1}>J_{1}^{*}$ and $\delta>0$.
Proof. We fix any J_{1}, J_{2} such that $J_{2}^{*}>J_{2}>J_{1}>J_{1}^{*}$, then by Lemma 8 , if $b \geqq \beta^{\prime}>a$ and β^{\prime} is sufficiently close to a, (23)

$$
\mu_{2 n}\left[I\left(J_{1}, J_{2}, a\right)-L\left(a, \beta^{\prime}, \lambda, \delta\right)\right] \rightarrow 0(\lambda \rightarrow+\infty)
$$

for all $\delta>0$. We denote by β the least upper bound of β^{\prime} such that $b \geqq \beta^{\prime}>a$ and (23) holds for all $\delta>0$. Also we fix a $\delta_{0}>0$ such that $J_{2}^{*}>J_{2}+\delta_{0}>J_{1}-\delta_{0}>J_{1}^{*}$. Then if $b \geqq \beta^{\prime \prime} \geqq \beta>\alpha^{\prime \prime}>a$ and $\beta^{\prime \prime}-\alpha^{\prime \prime}$ is sufficiently small, we have by Lemma 8

$$
\begin{equation*}
\mu_{2 n}\left[I\left(J_{1}-\delta_{0}, J_{2}+\delta_{0}, \alpha^{\prime \prime}\right)-L\left(\alpha^{\prime \prime}, \beta^{\prime \prime}, \lambda, \delta / 2\right)\right] \rightarrow 0(\lambda \rightarrow+\infty) \tag{24}
\end{equation*}
$$

for all $\delta>0$. Also by the definition of β, there is an $\alpha^{\prime \prime}$ arbitrarily close to β such that $\beta>\alpha^{\prime \prime}>a$ and

$$
\begin{equation*}
\mu_{2 n}\left[I\left(J_{1}, J_{2}, a\right)-L\left(a, \alpha^{\prime \prime}, \lambda, \delta / 2\right)\right] \rightarrow 0(\lambda \rightarrow+\infty) \tag{25}
\end{equation*}
$$

for all $\delta>0$. Hence we can take for any $\beta^{\prime \prime}$ such that $b \geqq \beta^{\prime \prime} \geqq \beta$ and $\beta^{\prime \prime}-\beta$ is sufficiently small or zero, an $\alpha^{\prime \prime}$ such that $\beta>\alpha^{\prime \prime}>a$ and (24), (25) are satisfied for all $\delta>0$. We take such $\alpha^{\prime \prime}$ and $\beta^{\prime \prime}$ in the following.

Now if $\left(p^{0}, q^{0}\right) \in L\left(a, \alpha^{\prime \prime}, \lambda, \delta / 2\right)$, then the solution $p=\tilde{p}\left(t, p^{0}, q^{0}, a, \lambda\right)$, $q=\tilde{q}\left(t, p^{0}, q^{0}, a, \lambda\right)$ of (14) can be continued in D to $t=\alpha^{\prime \prime}$, by the definition of $L\left(a, \alpha^{\prime \prime}, \lambda, \delta / 2\right)$. We denote by $\mathfrak{M}_{\lambda, \delta}$ the one-to-one mapping of $L\left(a, \alpha^{\prime \prime}, \lambda, \delta / 2\right)$ into $I\left(\alpha^{\prime \prime}\right)$

$$
\left(p^{0}, q^{0}\right) \rightarrow\left\{\tilde{\mathfrak{p}}\left(\alpha^{\prime \prime}, p^{0}, q^{0}, a, \lambda\right), \tilde{\mathfrak{q}}\left(\alpha^{\prime \prime}, p^{0}, q^{0}, a, \lambda\right)\right\}
$$

and also by $R(\lambda, \delta)$ the set $\mathfrak{A}_{\lambda, \delta}\left[I\left(J_{1}, J_{2}, a\right) \cap L\left(a, \alpha^{\prime \prime}, \lambda, \delta / 2\right)\right]$. Then by the definition of $L\left(a, \alpha^{\prime \prime}, \lambda, \delta / 2\right)$ we have for $0<\delta<2 \delta_{0}, \lambda>0$

$$
\begin{equation*}
R(\lambda, \delta) \subset I\left(J_{1}-\delta_{0}, J_{2}+\delta_{0}, \alpha^{\prime \prime}\right) \tag{26}
\end{equation*}
$$

Also the mapping $\mathfrak{U}_{\lambda, \delta}$ is measure-preserving since (14) is a Hamiltonian system (Theorem of Liouville). ${ }^{6)}$ Hence for $\delta>0, \lambda>0$

$$
\begin{equation*}
\mu_{2 n}[R(\lambda, \delta)]=\mu_{2 n}\left[I\left(J_{1}, J_{2}, a\right) \bigcap L\left(a, \alpha^{\prime \prime}, \lambda, \delta / 2\right)\right] \tag{27}
\end{equation*}
$$

By (25) and (27), we have for all $\delta>0$

$$
\begin{equation*}
\mu_{2 n}[R(\lambda, \delta)] \rightarrow \mu_{2 n}\left[I\left(J_{1}, J_{2}, a\right)\right](\lambda \rightarrow+\infty) . \tag{28}
\end{equation*}
$$

From (28), (24) and (26), we have for $0<\delta<2 \delta_{0}$

$$
\mu_{2 n}\left[R(\lambda, \delta) \cap L\left(\alpha^{\prime \prime}, \beta^{\prime \prime}, \lambda, \delta / 2\right)\right] \rightarrow \mu_{2 n}\left[I\left(J_{1}, J_{2}, a\right)\right](\lambda \rightarrow+\infty) .
$$

Therefore we have for $0<\delta<2 \delta_{0}$,

$$
\mu_{2 n}\left\{\mathfrak{A}_{\lambda, \delta}^{-1,}\left[R(\lambda, \delta) \cap L\left(\alpha^{\prime \prime}, \beta^{\prime \prime}, \lambda, \delta / 2\right)\right]\right\} \rightarrow \mu_{2 n}\left[I\left(J_{1}, J_{2}, a\right)\right](\lambda \rightarrow+\infty)
$$

since $\mathfrak{H}_{\lambda, \delta}$ and so $\mathfrak{H}_{\lambda, \delta}^{-1}$ is measure-preserving. Hence we have for $0<\delta<2 \delta_{0}$,

$$
\mu_{2 n}\left[I\left(J_{1}, J_{2}, a\right) \bigcap L\left(a, \beta^{\prime \prime}, \lambda, \delta\right)\right] \rightarrow \mu_{2 n}\left[I\left(J_{1}, J_{2}, a\right)\right](\lambda \rightarrow+\infty)
$$

since we can easily see that $I\left(J_{1}, J_{2}, a\right) \cap L\left(a, \beta^{\prime \prime}, \lambda, \delta\right) \supset_{\mathfrak{A}_{\lambda, \delta}^{-1}}^{-1}[R(\lambda, \delta)$ $\left.\cap L\left(\alpha^{\prime \prime}, \beta^{\prime \prime}, \lambda, \delta / 2\right)\right]$ by the definitions of $L\left(a^{\prime}, b^{\prime}, \lambda, \delta\right)$ and $R(\lambda, \delta)$.
Thus we get

$$
\begin{equation*}
\mu_{2 n}\left[I\left(J_{1}, J_{2}, a\right)-L\left(a, \beta^{\prime \prime}, \lambda, \delta\right)\right] \rightarrow 0(\lambda \rightarrow+\infty) \tag{29}
\end{equation*}
$$

for $0<\delta<2 \delta_{0}$ and so for all $\delta>0$, since $L\left(a, \beta^{\prime \prime}, \lambda, \delta_{2}\right) \sqsupset L\left(a, \beta^{\prime \prime}, \lambda, \delta_{1}\right)$ if $\delta_{2}>\delta_{1}$.

If $\beta<b$, then we can take the above $\beta^{\prime \prime}$ in such a manner that $b \geqq \beta^{\prime \prime}>\beta$. But then (29) contradicts the definition of β. Hence $\beta=b$. Then if we take $\beta^{\prime \prime}=\beta=b$ in the above argument, we have from (29) the desired results. Q. E. D.

Reference

[1] Kamke, E.,: Differentialgleichungen reeller Funktionen, Leipzig (1930).

[^0]: 2) $\partial \mathfrak{F} / \partial E\{H(\tilde{p}, \tilde{q}, t), t\}, \partial \Im / \partial s\{H(\tilde{p}, \tilde{q}, t), t\}$ are the values of $\partial \mathfrak{F} / \partial E(E, s), \partial \mathfrak{F} / \partial s$ (E, s) for $E=H(\tilde{\mathfrak{p}}, \tilde{\mathfrak{q}}, t), s=t$ and $\partial H / \partial s(\tilde{\mathfrak{p}}, \tilde{q}, t), \partial \tilde{\mathfrak{S}} / \partial s(\tilde{\mathfrak{p}}, \tilde{q}, t)$ are the values of $\partial H / \partial s$ $(p, q, s), \partial \tilde{\mathfrak{S}} / \partial s(p, q, s)$ for $p=\tilde{p}, q=\tilde{q}, s=t$.
[^1]: 6) Cf. E. Kamke [1, pp. 155-161].
 7) Cf. footnote 2) and 5).
