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4. Linitaon with ’egard to pole.
We turn next our attention to the problem relating to the pole zoo and its

residue A, supposing that there exists at all a pole of the function f(z), schlicht

and metamorphic in the basic circle z < 1. We consider now, for that purlx,

again as in the part I the corresponding function g():f(-t)-i and make use

of a distortion formula

i’- (ICl > i)

die(xivel 6ml; by’ 8ky emd give ]ter otherwi_ee by Cbltsi which

ICl

due to L6wner.m The logarithmic function in the left-hand Bide in (8.1) means,
of OOUl, such a branch that vanishes at C= oo. The formula (4.1) is, in

reality, more profound than all the others used in this paper, save the previously

quoted one clue to Landau.

We state now tho following proposition.

Theorem. If f(z) is schlicht n z[ < 1 and possesses here actually a

pole zoo with ,’esidue A, then we have

(4.3) lg ----L =< lg
1- zoo ["

and hence especially

(a.4) I-I"(1 -I-I) < IAI <
azd

(.) arg (-L) + !g (1-1(R)10") _-< arg a arg (-d(R)) lg

*) I. Pro. 21 (1945), 269.
15) H. Grumky, Neue Abschtzungen zur konformen Abbildung ein- und mehrfach

zusammexd3Kugender Bereiehe. Schriften d. math. Sem. u. d. Inst. f. angew. Math. d.
Univ. Berlin 1 (1932/3), 95-140.

16) G. M. Golusin, Ergnzuug zur Arbeit ,,Ober die Verzelrunltze dot schlichten
konformen Abbildungen". Reeueil Math. Z (44) (198), 685-688 (in Russian).

17) K. Iwner, foe. cit. 9). Cf. also E. Frank, Beitrge zur konfomen Abbildung.
Inaug.-Diss. Frankfurt (1919).
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whe,’e the any-valued uantities hae to be dete’nitned by thein" suitable

values. All the limits ave attained by somefunctions belonging to Hefanily.
The generb.l estimation (44.3) in the theorem is an almost immediate con-

sequence of (44.t). In fact, recalling the relations (2.3) and (2.44), we are led

at once to it. Next, the equality occurs there, as is shown also by the aid of

Gmnsky’s extremum hmetions,is) only when the function f(z) co’insides with one

of the sehlieht functions, each of which maps zl < 1 conformal!y onto a domain,
obtained by cutting the whole plane along an are of a logarithmic spiral interset-

1
ing all the rays, which start from the origin, at a definite angle, (q +r) say.

Such functions are of the form

where we have put --e for the sake of brevity, and we have furthermore

exactly -- 1

for the function (44.6).
The remaining estimations (44.44) and (44.5_) are, of course, the special eases

of the general one.1) We need, in fact, merely to take account only of the real

and imaginar-y parts respectively of the quantity put in the absolute value sign

in the left- hand side of (44.3). As for the equalities, they hold good, in the first

place, in the left- and right-hand sides of (44.44), by (44.6) and (44.7), only for the

functions

(44.8) f(z)= zooz(1--)zoo_z and j’(z)= (1-- ooz) (zoo-- z)
msictively, which are, of course, derived from (44.6) by putting ,=1 and---1 respeo’tively. The former function maps[z I< 1 onto the whole plane

cut along an arc of the circle of radius z about the origin, the arc having the

end-points at

( ]oo [’--1+_2i zo. V’I-- [zoo[) zoo=--e*’-’.....
so that its angle at centre is equal to 44 arosin zoo [, where the arcsine-funotion is

supposed as usual to attain its principal values; while the latter, being of the same

18) H. Grnnsky, loc. cir. 15).
19) The left inequality of (4.4) follows, too, from the weaker distortion theorem (4.2).

The inequality (4.5) follows correspondingly fr_:m a less general form of (4.1) in which arg
stands in the place of lg. G. M. Golusin himself showed previously in his paper: lber die
rerzerrungsstze der sehllchten konfrmen Abbildungen. ]tecueil Math. 1 (44])(1936), 127-
135 (in Russian) this special case only, and later the general one cited in the text, by
means of th so-called Lwner’s differential equation which he is fond of using.
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form as the already cited function (3.12) or (3.17) and coi’nciding, in fact,
entirely with it for

=**+
1

and ’-- a[ z**
z.. a., z..

transforms lz[ < 1 onto the whole plane cut along the segment of length

4[ z..[
)" between the two points (1 +/- ]z.. [)"

Secondly, all the arguments in (4.5), and the logarithm contained in (4.3)
also, relate to such ones as the quantity arg A-- arg (-**) tends to zero if we

stppose that z** itself does so in a continuous mariner.
) In (4.4), the equalities

in the left and right sides appear only for the functions

respectively, which follow again from (4.6) by putting e--i and where the

logarithmic function ]g (1--z..z) in the exponent are assumed to denote its

branch vanbhing at z---0. Each of these extremum functions maps Izl (l
onto the whole plane cut along an arc of a logarithmic spiral intersecting all the

rays, which start from the origin, a the angle - +/-- respectively. The end-

points of the arcs in question are laid at the images of the original points

1-- z.. (--i z.. --+il/2--] z** [’-) and
1 q-i z**

respeetive]y all of which lie on zi 1 and are, in reality, the zero points of the

derivatives of the respective mapping functions.

On this occasion, it may be noticed that the estimations (.4:) for AI by

means of Iz.. lean conversely be regarded as those for z** by means of lal
In fact, solving these inequalities with regard to z** I, we have first

I+I.A!
at any time, and on the other hand

i .l < 1
-E ( v" + v’i-2V T)

fir

1

provided that 4 1A --< 1. An the limits are attained by the respective functions.

5. Some coeleient problems.
Let the function ](z) be, here ak), meromorphic and schlicht in zl < 1

and normalized at z----0. Suppose further that there exists, as before, actually a

20) C.,f. also the relatious (5.7) stated later.
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pole zoo with residue A. Then, upposing the function f(.z)--
A

Zoo
regular

z! < 1 to be expanded in power series about z--O, we put

(s.) .f()=A + x (l! < 1).
Z Zoo

The original expansion of the ftmtion itself being

$()= .v a",

say, with normalization conditions

a0=f(O)--O and al--ft(O)--1,
we have immediately

A A(.2) - . +; o= .-"*’ + a. (n>).

We can then, in conformity wih such circumstances, deduce some. conditions to

which the coefficients in (5.2) must be subiect. We have namely, as an imm

diane consequence of the preceding results, the following proposition.

Theorem. Zet f(z) denote a function of the same ind as in the lrceced-
ing theo’em and fu’ther (5.1) its expressiom Then we have, with ’espect to

the beginning coecients,

(.) -and

(.) .- <-_ +

all these estimations being precise.
In ft, the inuality (5.3) follows at once, by mmem the mtatiom

(5.2), rom the pree thmm, i.e. (4.3), d the inuity (5.4)
Motm]y byM(3.9). To show that the foyer giv a pr i-
tion, we have on consider the extrem netiom (4.6) th coefficients

lg CI-II) 0e lg Cl-lzml*)ao ze and a:1--

for and on for wch the uiSy in (5.3) my cum. Next, in (5.4),
the cond function in (4.8) which reproS’ the sial 1 of the,
stands for the uque extmmum function d we vedfor it

A=-- l_lz.[ a.=-- i_iz.i, (n > 1);

A I ( i )
We c a, for the mmni fficienb of the ri in (.2), thoh

mh enough, derive inualiti ofofor For example, the hmtion
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Zoo

is at any rate regular and schlicht in ]zl < 1, we have generally, by a Little-

wood’s coefficient theorem,21) for any n > 1,
A ( 1 -ow, wo d, dta, limigio eo Io-I dndi oay on I I"

We have, for instance, from (5.3), (5.) and (5.5), by king (4.) into ae-

Il--< 1-lz.I’’
1 )I,,[ < Iz. 1-1z.l’

respectively. Bug all the limit in

precise at all.

We note on this occasion, by means of (.a.3) and (5.11), that the interesting

asymgtotic behaviours

(5.7) A----z,/O(lz..lg, --=--z/O(ll),
hold always unifomaly provided that the pole z** lies near the zero point 0 of the

function.

We consider next, in place of (5.1), the Laurent expansion of the function

itself about iN pole z.,,

say, which is certainly valid e.g. in the annular domain 0 <[z--z**[< 1--[z**[.
In flais ease we are also able to deduce the precise limiN eoneeming the beginning

coefficients/0 and

Theorem. We, have always, and tn’qcise,ly, the necessary conditions

(5.9) 1-.1’
A

and

(5.10) =< (X_ i.l..y.
To prove the proposition, we introduce here an intermediate variable ff by

means of the linear tmndormation

C= 1-- z..z or z----
z.-z C-**

21) J. E. Littlewood, On inequalities, in the theory of funetiom. Proc. London Math.
Soe. 23 (1925), 481-519.
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which transforms ]z[ < 1 onto I] > 1 in such a way that the two pointe z--z

and z--0 correspond to = and C-- 1 respectively, and then define a new

functionH by the expression

This function is cernly schlicht on [1 > 1 and normalized at c, i.e. of the

same form, in a neighbourhood of o, as the function g() given in (3.1)
and, moreover, its Laurent expansion about this point begins with

_( 1--AII" o+)__ + (1-AII")’ , +(S.l) //()=-

ttenee the LSwner’s distortion formula (3.), applied to the hmetion //()
with respect to the point 1 (---), leads us, since H ----0, immediately to

(5.9), while the area theorem (3.10) implies particularly (5.10). The second

function in (4.8)stands evidently again for the unique extremtun function in

both inequalities (5.9) and (5.10), and possesses actually the attributes

A= x-I. (i:i/ (>)’

( 1)H()=- (R)+ +
completes the proof.

If we require again some estimations with bounds depending only upon

quantiy I,1 for the eoettieienf themselves in question, we may take, for

instance, the right inequali in (4:.4) into aeeotmt; namely, it folIows tllen, by

eombining it with (5.9) and (5.10), that

(1- I’)’
and

(.1) I., (1-I I-")
respectively. Though the equality is never realized in (5.12), the limit in

(5.13) is surely attained again by the just mentioned extremum function.

6, .Further dir,cussons o’ l,mitio co’nce’,nig pole.
In conolusion, we now notice, in order to fulfil the promise stated at the

footnote of 3, that various inequalities obtained in the last paragraph are of

the form analogous to (3.9) from which the result (3.8) has followed. Similar-

ly, we can hence regard these inequalities as those which give conversely the limi-

tations concerning the position of the pole z or its residue A, provided that the
respective coefficients are preassigned. We illustrate these circumstances by the
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following theorem taken as an example.

Theorem. Retaining all the notations used abor,, e, conclude that,
given lrevwusly the magnitude of the coecieno ao, the position of the pole

’est"i,ded by

i1(6.1) I-I v,i+il+l

1 ) -"1-(e.2) I-I->_ 1- in(ll-,l,
d, Sot g+n I],
(6.) I1 (1,1),
r =(B) (B o) d h untidy d-d - of h

=(1--), 0 m < 1,
a &e o&e," ha that Oe eid

(.) I.A.III+1
In ft, thr areiuen of (5.) and (.13)

and further of (5.2) tive. It wo that th initi
(6.1), (6.), (6.) and (6.4) a common extmm fmtion, v. the

funotion in (4.8).


