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43. Note on the theory of conformal representation
by meromorphic functions I1.*

By Yisaku KOMATU.

Mathematical Institute, Tokyo Imperial University.
(Comm. by S. KAKEYA, M.LA., May 12, 1945.)

§4. Limitasions with regard to pole.

‘We turn next our attention to the problem relating to the pole z,, and its
residue A, supposing that there exists at all a pole of the function f(z), schlicht
and meromorphic in the basic circle 2| <1. We consider now, for that purpose,
again as in the part I the corresponding function g({)=7({~")~" and make use
of a distortion formula
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discovered first by Grunsky' and given later otherwise by Golusin'® which shar-
pens a classical theorem

(42) IOl aasn

due to Lowner.”” The logarithmic function in the left-hand side in (4.1) means,
of course, such a branch that vanishes at {=o0. The formula (4.1) is, in
reality, more profound than all the others used in this paper, save the previously
quoted one due to Landau.

We state now the following proposition.

Theorem. If f(z) is schlicht in |z| < 1 and possesses there actually a
pole z,, with residue A, then we have
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and hence especially
I 2 : [ 2o |*
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and

(4.5) ag(—Z) +1lg(1—|2)?) < arg 4 < arg (—2) — Ig (1 -zl ,

*) 1. Proc. 21 (1945), 269.

15) H. Grumsky, Neue Abschitzungen zur konformen Abbildung ein- und mehrfach
zusammenhingender Bereiche. Schriften d. math. Sem. u. d. Inst. f. angew. Math. d.
Univ. Berlin 1 (1932/3), 95-140.

16) G. M. Golusin, Ergiinzung zur Arbeit ,,Uber die Verzerrungssitze der schlichten
konformen Abbildungen’. Recueil Math. 2 (44) (1938), 685-688 (in Russian).

17) K. Lowner, loc. cit. 9). Cf. also E. Frank, Beitrige zur konformen Abbildung.
Inaug.-Diss. Frankfurt (1919).
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where the many-valued gquantities have to be determined by their suitable
values. All the limits are atiained by some functions belonging to the family.

The general estimation (4.3) in the theorem is an almost immediate con-
sequence of (4.1). In fact, recalling the relations (2.3) and (2.4), we are led
at once to it. Next, the equality occurs there, as is shown also by the aid of
Grunsky’s extremum functions," only when the function f(z) coincides with one
of the schlicht functions, each of which maps |z| < 1 conformally onto a domain,
obtained by cutting the whole plane along an arc of a logarithmic spiral intersect-

ing all the rays, which start from the origin, at a definite angle, % (p+m) say.
Such functions are of the form

21 —2.2)"
(4.6) J(@)= B —
where we have put e=¢® for the sake of brevity, and we have furthermore

exactly
—_ zi.) 1
(47) gt =elg g
for the function (4.6).

The remaining estimations (4.4) and (4.5) are, of course, the special cases
of the general one."” 'We need, in fact, merely to take account only of the real
and imaginary parts respectively of the quantity put in the absolute value sign
in the left- hand side of (4.3). As for the equalities, they hold good, in the first
place, in the left- and right-hand sides of (4.4), by (4.6) and (4.7), only for the
functions

48) f="F1TED g f=—

Zo—2 (1—%.2) (2—2)
respectively, which are, of course, derived from (4.6) by putting e=1 and
e=—1 respectively. The former function maps |z| < 1 onto the whole plane
cut along an arc of the circle of radius |z, | about the origin, the arc having the
end-points at

(2] 20 [P =120 | 200 | VT —[2,0]7) 200= — €F2irecsiniiseo 2,
so that its angle at centre is equal to 4 arcsin | z.. |, where the arcsine-function is
supposed as usual to attain its principal values; while the latter, being of the same

)

18) H. Grmnsky, loc. cit. 15).

19) The left inequality of (4.4) follows, too, from the weaker distortion theorem (4.2).
The inequality (4.5) follows correspondingly frim a less general form of (4.1) in which arg
stands in the place of l1g. G. M. Golusin himself showed previously in his paper: Uber die
Verzerrungssiitze der schlichten konfirmen Abbildungen. Recueil Math. 1 (43) (1936), 127-
135 (in Russian) this special case only, and later the general one cited in the text, by
means of the so-called Lowner’s differential equation which he is fond of using.
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form as the already cited function (3.12) or (3.17) and coinciding, in fact,

entirely with it for
2

a2=f2°°+—-1—— and &= 2 5 i

2o [@e| %o

transforms [z| < 1 onto the whole plane cut along the segment of length

4]z,| —Zeo
(l—lzeolz)z (li Izm:b|)2 ’
Secondly, all the arguments in (4.5), and the logarithm contained in (4.3)
also, relate to such ones as the quantity arg A— arg { —2%) tends to zero if we

between the two points

suppose that 2z, itself does so in a continuous manner.”” In (4.4), the equalities
in the left and right sides appear only for the functions

f(z)=zw2(z1m—_§:z)t‘ — zi"fz exp (xilg (1—2.2))

respectively, which follow again from (4.6) by putting e==% and where the
logarithmic function lg (1 —z.z) in the exponent are assumed to denote its
branch vanishing at z=0. Each of these extremum functions maps |z| < 1
onto the whole plane cut along an arc of a logarithmic spiral intersecting all the

rays, which start from the origin, at the angle —;— +- T respectively. The end-

4
points of the arcs in question are laid at the images of the original points
147 2o
12 ] I(—Izool_'-’”/z—’lzwlz) and T lz l( Iz“iq_q,l/___l_a)

respectively, all of which lie on |z| = 1 and are, in reality, the zero points of the
derivatives of the respective mapping functions.

On this occasion, it may be noticed that the estimations (4.4) for | 4| by
means of |z, | can conversely be regarded as those for |2.| by means of | 4|
In fact, solving these inequalities with regard to |z |, we have first

-z /Al
| 2 = 1+|_A-|,

at any time, and on the other hand
1
l2| =5 (VI+2V AT - V1-20]4])

ar

|20 = = (VIF2V 4] + VI+2V[4])
provided that 4| A| < 1. All the limits are attained by the respective functions.
§5. Some coefficient problems.
Let the function f(z) be, here also, meromorphic and schlicht in |z] < 1
and normalized at z=0. Suppose further that there exists, as before, actually a

20) Cf, also the relatious (5.7) stated later.
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pole z,, with residue 4. Then, supposing the function f(z)— zfz regular in
2| < 1 to be expanded in power series about z=0, we put
(5.1) fz)= 7-4;" + 3 agr (2l <1).

The original expansion of the funétion itself being
f (z) = ,f:'o a.z",

say, with normalization conditions
ao=f(0)=0 and @, =f,(0)=1 ]

we have immediately
(5.2) a‘,:%—’ al:?é_ +1; a.,.=—z,;%‘ +a, (n>1).

We can then, in conformity with such circumstances, deduce some. conditions to
which the coefficients in (5.2) must be subject. We have namely, as an imme-
diate consequence of the preceding results, the following proposition.

Theorem. Let f(z) denote a function of the same kind as in the preced-
ing theorem and further (5.1) its expression. Then we have, with respect to
the beginning coefficients,

—2 | 1 1
o = i S.. B
(5:3) Ig a) []g 1—ay !’—' g 1""Zml"
and
A 1
(5-4) az— _éz"“é |zoo[ + I—%TI )

all these estimations being precise.

In fact, the inequality (5.3) follows at once, by remembering the relations
(5.2), from the preceding theorem, i.e. (4.3), and the inequality (5.4) also
analogously by recalling (3.9). To show that the former gives a precise limita-
tion, we have only to consider the extremum functions (4.6) with coefficients

= —2 gt EAlID  and g =] —t kE O-le0l®
for and only for which the equality in (5.3) actually occurs. Next, in (5.4),
the second function in (4.8) which represents the special case e=—1 of those,
stands for the unique extremum function and we have indeed for it

Zeq = — E
1—z.]" ’ S T P

A 1 ( 1 )

We can also, for the remaining coefficients of the series in (5.2), though
rough enough, derive inequalities of analogous form. For example, as the funetion

A=— (n>1);
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f(::z) =24 zz,.-l

=2

is at any rate regular and schlicht in |z| < 1, we have generally, by a Little-
wood’s coefficient theorem,™ for any n > 1,
A 1 \"' = en
(5'5> ‘%&"F _Ianl < (1 + n-—l) ’z°°|“_l < lzceln—l .
Now, we can find, if desired, limitations for | e,| depending only on | z.|.

‘We have, for instance, from (5.3), (5.4) and (5.5), by taking (4.4) into ac-
count,

[ 20| ENN |2ee|*

<  1%e|
S|ao|= T[] Iarl_l—_-lz—-lz—, |¢z|~m‘—_w,

(5.6)
| tel< e (vt ) @D

respectively. But all the limits in (5.5) and (5.6), save only one for a, not
Pprecise at all.

‘We note on this occasion, by means of (4.3) and (5.3), that the interesting
asymptotic behaviours

(6.7) A=—20+0(|2]), @=—2.+0(|2|"), @=0(|2|")

hold always uniformly provided that the pole z, lies near the zero point 0 of the
function.

We consider next, in place of (5.1), the Laurent expansion of the function
itself about its pole 2.,

(5:8) D=~

say, which is certainly valid e.g. in the annular domain 0 < [2— 2| < 1—|2.].
In this case we are also able to deduce the precise limits concerning the beginning
coefficients 8, and B;.

Theorem. We have always, and precisely, the necessary conditions

2
(59 ll——}z—ﬁl—ﬁo 4z, <1 4 | 2e0|
and

+ 2.‘,8,. 2—20)"

|2

(5.10)

ﬁl <1
A7 -zl °

To prove the proposition, we introduce here an intermediate variable { by
means of the linear transformation

_ 1—22 oz L1
= 2 or 2=F =,

21) J. E. Littlewood, On inequalities in the theory of functions. Proc. London Math.
Soc. 23 (1925), 481-519.
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which transforms |z| <1 onto |{|>1 in such a way that the two pointe 2=z,
and z=0 correspond to {=c0 and {= _z%,— respectively, and then define a new
function H({) by the expression

_ 1wl (2L-1
(5.11) A=~ 1=l (2221,

This function is certainly schlicht on |{| > 1 and normalized at { = oo, i.e. of the
same form, in a neighbourhood of {=co, as the function g({) given in (3.1)
and, moreover, its Laurent expansion about this point begins with

i 1— lzoo.2 ) (1— Izoolz)2 Bl

(512) H(=¢ (——A Bo+2, ) + i e

Hence, the Lowner’s distortion formula (3.3), applied to the function H({)
with respect to the point C= %, Jeads us, since H(%) =0, immediately to
(5.9), while the area theorem (3.10) implies particularly (5.10). The second
function in (4.8) stands evidently again for the unique extremum function in
both inequalities (5.9) and (5.10), and possesses actually the attributes

e Ze I L i S
A= l_lzwl2 ’ Bn— (1_|Z°°l2)n+2 (n_2_0) )
. 1 Zo 1
H = — .__) e .
(c)c(z“+zm+sz’
this completes the proof.

If we require again some estimations, with bounds depending only upon the
quantify |2z.|, for the coefficients themselves in question, we may take, for
instance, the right inequality in (4.4) into account; namely, it follows then, by
combining it with (5.9) and (5.10), that

| 2 | (142 2 [
(5.12) (8| = A=z
and
| 20 |*
(513) |8 < A=z

regpectively. Though the equality is never realized in (5.12), the limit in
(5.13) is surely attained again by the just mentioned extremum function.

§6, Further discussions on limitations concerning pole.

In conclusion, we now notice, in order to fulfil the promise stated at the
footnote™ of § 3, that various inequalities obtained in the last paragraph are of
the form analogous to (3.9) from which the result (3.8) has followed. Similar-
ly, we can hence regard these inequalities as those which give conversely the limi-
tations concerning the position of the pole 2, or its residue A, provided that the
respective coefficients are preassigned. We illustrate these circumstances by the
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following theorem taken as an example.

Theorem. Retaining all the notations used above, we conclude that,
given previously the magnitude of the coefficiento av, the position of the pole
% 18 Testricted by

2 |ao|
6.1 T | =
(6-1) |7 Vitd|g+1
and

(62) |z.|= /1— Min ( 1—al, ﬁ) =V1— exp(—|ig[l—ai[]),

and, for given |8, by
(6.3) l2a| = m(| B,
where m=m(B) (B=0) denoles the uniquely determined root of the
equation
m*=B(1—m*)®*, 0=<m<1,
and on the other hand that the residue by
6o Mz - S i,

In fact, all these results are immediate consequences of (5.3) and (5.13)
and further of (5.2) respectively. It is worthy to note that all these inequalities
(6.1), (6.2), (6.3) and (6.4) possess a common extremum function, viz. the
second function in (4.8).



