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1. Let X be a simply connected, infinitely sheeted open Riemann surface.”
Then, as is well known, there exists an analytic function defined on X' which
maps I conformally onto the unit circle or onto the entire Gaussian plane. The
type of X'is hyperbolic or parabolic according as the first or the second case hap-
pens. It is an important problem in the theory of analytic functions to determine
the type of such Riemann surfaces, and many necessary or sufficient conditions
for each of these cases were obtained by several authors. But necessary and suf-
ficient conditions are known only for some special classes of Riemann surfaces.
The purpose of this paper is to give a necessary and sufficient condition in terms
of Brownian motion on a Riemann surface.

2. In a previous paper® we have discussed Brownian motion on the
Gaussian planc and have obtained the following theorem: Let D be a Jordan
domain in the Gaussian plane and let E be an arbitrary elementary set on
the boundary I'=Bd(D) of D. Then the probability P(C, E, D) that the
Brownian motion starting from a point €€ D will enter into E without enter-
ing into the other pavt I'— E of the boundary of D before it (i.e. without get-
ting out of D before i), is a bounded harmonic function of £ on D wlhich
tends to 1 or to 0 according as € tends to an inner point of E or of I'— E.

In order to apply this result to our problem, let us first notice that it is un-
necessary to assume that D is one-sheeted. D) ¢an, in fact, be any finitely sheeted
Jordan domain on a Riemann surface having no algebraic branch points in it.
This follows from the fact that P(§, E, D) is a function of { defined on a multi-
ply sheeted domain Dy satisfying the houndary conditions stated above, which is
locally harmonic on D. It is of course understood that the Brownian motion is
defined on the multiply sheeted domain D, so that a path having double points
on the Gaussian plane may have no double points on D). The condition that D

is bounded is also unneccessary.

1. As for the type problem of Riemann surfaces, sce R. Nevanlinna, Eindeutige
analytische Funktionen, 1936, Chapter XI1II.

2. S. Kakutani, Two-dimensional Brownian metion and harmonic functions, Proc. 20
(1944), 700-708.
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Next we notice that the existence of a finite number of algebraic branch
points A= {ay, ..., ap} in D does not affect the validity of our theorem if we
adopt the following convention: if a is an algebraic branch point of D), then
P(a, E, D) is defined as the limit of P({, E, D) as ¢ tends to @ on the multi-
ply sheeted domain D. This follows from the following two facts: (i) for any
{ e D— A, the probability that the Brownian motion on D starting frora + will
hit at an algebraic branch point of D (without getting out of .D before it) is zero,
(ii) P(C, E, D) is a bounded harmonic function defined on D— A and every
algebraic branch point of D is a removable singularity of P({, E, D).

Thus D can be any finitely sheeted Jordan domain on a Riemann surface,
bounded or not, having a finite number of algebraic branch points in it Such a
domain D will be called a Riemann-Jordan domain.

3. Let X be a simply connected, infinitely sheeted open Riemann surface.
We assume that 3 is given as the union of an increasing sequence of Riemann
Jordan domains {Dy|n=1,2, ...} such that Dy<<Dy,s, n=1,2,... This
means that D, is a subdomain of D,.;, both being considered as multiply sheet-
ed domains, and that the boundary I',=Bd(D,) of D, is contained in Di41.

Let D, be a simply connecfed Riemann-Jordan domain on X with the
boundary I'y=Bd(D,), so that 3—D, is a doubly connected subdomain of =
whose boundary relative to 3 is exactly I, For example, take as D a small
one sheeted circular domain on 3 having no algebraic branch points of 3 in it.
We may assume that D,<D;.

For any n>>1 and for any €€ D,— Dy, let u.(§)=P(C, I, D.—D,) be
the probability that the Brownian motion starting from £ will enter int.o I,
without entering into I',= Bd(D,) before it. Then u,({) is a beunded harmo-
nic function defined on D, — D, which tends to 1 or to 0 according as C tends to
a point on I or on Iy,

It is clear that u.(8)<un.1() on D,—D,, n=1, 2, ... Hence lim,,o
.(8)=2({) exists and is harmonic on X—Do= \J2(Du—D,). (L) is the
probability that the Brownian motion on 3 starting from ¢ will enter into ["y=
Bd(D,) (without getting out of 3 — D, before it). We shaltdenote this probabili-
ty by P(C, I'y, 5—D,). Then our main result may be stated as follows:

Theorem. w(C)=P(C, 'y X~Dy) is either <1 throughout on S—D,
or =1 on X— D, according as X' is of hyperbolic or of parabolic type.

Proof. Let &€ D, be an arbitrary point. Let o =¢({) be an analytic
function satisfying 0=g({,) which maps 3 conformally onto the unit circle 3’
={w||w| <1} or onto the entire Gaussian plane 3'= {w||w| < ™} according
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as X is hyperbolic or paratolic. Let us put IV.=@(D,), I"a=@(I",), n=0,
1,2, ...Then each I, (n==0) is a simple closed Jordan curve which separates
0=0fromw=00. Itisclearthat 3’ = \J=_,I),. Turther, w.(o)=u.(p '(w)) is
a bounded harmonic function defined on D',— IJ; which tends to 1 or to 0 ac-
cording as @ tends to a point on 'y or on [”,. Thus %/.(w) is nothing else
than the probability P(w, I's, 17,— Dj) that the Brownian motion on the Gaus-
sian plane starting from e will enter into 1"y without entering into I™, before it.
It is clear that v/.(w)<1'ni (@) on D’,.—ﬁ",, n=1, 2, ... Hence u'(0) =
i,y o0ttn( @) exists on X' — D= 2, (D,— D) and the limit /(o) is equal
to the probability P(w, Iy, 3'—Dj) that the Brownian motion on the Gaus-
sian planc starting from o will enter into I, without getting out of 3” before it.
If X is hyperbolic (i.e. if X’ is the unit circle) then this probability is <1
the entire Gaussian plane). The proof of our theorem is completed if we observe
that w(@ " (w)=P(@ (@), [y, S —Dy)=1'(e)=P(w, Iy, 3'—D)).



