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36. A Theorem on the Poisson Integral.

By Makoto OHTSUKA.
Mathematical Institute, Tokyo Imperial University.
(Comm. by S. KAKEYA, M. 1. A, June 12, 1946.)

1. We will prove the following theorem,

Theorem. Let u(z) (z = re®) be a harmonic function in the unit circle | z |
< 1 and be expressed by a Poisson integral :

2% —
u(@) = e s (012@ T 99 &)

where u (e®) is integrable in Lebesgue's sense, and G be any simply connected
domain in |z | < 1.

When we map G conformally on the unit circle | x| < 1, u(2) becomes a
harmonic function v(x) in | x| < 1.

Then v(x) can be expressed by a Poisson integral of the form (I)in | x| <1.

Prof. Tsuji proved this theorem in the special case in which G is bound-
ed by a finite number of analytic curves C; ({ = 1,...,R) in | 2 | <1 and a certain
number of circular arcs on the unit circle | z | =1, and the angles between
any two adjoining C; are different from zero and the angles which C; makes
with the unit circle are different from zero and 7, so that C; does not touch
the unit circle.®)

2. Proof. We write %(z) in the form:

“@=grf %@ +u ) T Gy do
2% — 2
- “zla?j; 3 U1 o) | e fgrenadp. (2)
Since both { | #(e®) | +u(e#)} and { | u(e®) | —u(ei?)} are positive and in-
tegrable in Lebesgue’s sense, #(2) can be expressed by a difference of
two positive harmonic functions of the form (1), so that to prove our theorem,
it saffices to prove for a positive harmonic function of the form (1), where
% (ei?) = 0.
We take a sequence of positive numbers, such that
O My < My << vovee < M-
and define u,(¢®) as follows;
Un(e?®) = u(ei) when My = u(e?),
Un(e?) = M, when  u(ei?) > M,,

(1) M. Tsuji, Theorems concerning Poisson integrals. Jap. Journ. Math. 7 (1930), 227
—253,
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so that 0= un(e?) =M, for 0<6=<2n. (3)
We put

1 1—72
un(@) = 27 f “n () T2 cos (G—g) + 77 99

then by (3)
1 p2= 1—72
Un (z) = _—Z;TT/;M” 1—27 cos (0__90) + 2 dso M,
in|z| <1
Since wE)Su(ed)s oo S tup(e®) S oo ,
we have

ul(z)Suz(z)s ...... su”(z)é ...... , (4)
and by Lebesgue's theorem

1— g
},l_t.lt:o un (2) = hm or / un (€)1 2rcos(0-—so)+ 7 ¢
1 -7
f Hm un (e%) 13 cos(0—50)+72 do =97 f u (e*) 1—27cos(0-—¢)+rzd¢
= u(2). (5)

By the conformal mapping of G on | x| <1, #»(2) becomes a bounded
harmonic function v, (x) in | x| <1, so that v (x) can be expressed by

1 1-—
vn (%) = -27fv”(e 1= 2pcos(y——go) Tt 9 (6)
where x = pe*. From (4) and (5) we have
v (x)évz(x)é ...... évn(x)é ..... . (7)
and
Hm v,(x) = v (%) (8)

By Fatou’s theorem, v, (x) tends to v.(e#) almost everywhere when p—
1. Ift en be a set on | x| = 1 where lm{ vn (pe*) does not exist and put
e =”§le.,, = (0, 27) —e. Then
me = 0 (9)
because me, = 0(n=1,2, ...... ), and on E lim vs (0 e#) = v, (e#) exists for all
n. Therefore on E by (7) -
PNCOE llm Vs (0e) < hm Un+1 () = vpi1 ().
Hence on E
vi(e) S v(e) =< -ooer =vn(e) - R
and if we define
v (e¥) = vy (%) on E,
vp (ei%) =0 on e,
then

V() S () = o SO (W) oeeee (10)
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and by (9
1 1—p2
on () = o7 f vn (e9) T=3p cos(9,—¢)+p2 dg

1 —
=2n f UG cos(¢ go) T T % an
From (7), (10), (11) and by Lebesgue’s theorem

v (%) = lim v, (x) = hm 1 zz_;t (e#) 1—p? do
v 2 J Yn 1——2p cos(p—g) + p2 %

f lim oy (e¥) 1—2p cos (¢—90) + p? %

. 1-—
= %—‘- 01) (etv) 1'-—2pcos(¢—¢)+p2» do,

where we put
Hm v, (e*®) = v (ei¥)
7—

which is integrable in Lebesgue’s sense, because
v(0) = -——fv i) dp < .
That is,

1—p
v (%) = 2nfv(e?’) 1— Zocos(y ga)+p2 dgp.
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Remark. Let z = f(x) be a single-valued regular function in | x | <1 and
suppose | f (%) | <1. By this transformation #(2) becomes a harmonic func-
tion v(x) in | x| <1. Then similarly as above, we can prove that »(x) is
expressed by a Poisson integral of the form (1) in | x| <1. Therefore G is

not necessarily a plane simply connected domain.



