) [Vol. 25,

17. Fundamental Theory of Toothed Gearing (II).

By Kaneo YAMADA.
Department of Applied Dynamics, Tohoku Univer i y, Sendai.
(Comm. by T. KUBOTA, M.J.A., Feb. 12, 1949.)

Assume that a curve K is oriented to a certain direction. Take any two
points P, and P on K. We say that the arc length P, is positive or negative
according ag P exists at the positive side or negative side of . The orientation
of the tangent to K at any point may be defined in usual manner in accordance
with that of K, TLet C be an arbitrary point. We give the length of the segment
PC of the straight line connecting P with C a positive or negative sign according
as O exists on the left side or right side of the tangent to X at P. Referring to
a pair of pitch curves K; and K, we shall assume that they are oriented in the
same sense, that is, the common tangent at every instant has the same sense even

if observed as a tangent of K; or of K.

8§ 1. Analytical representation of profile curves.

Given an oriented curve K and determined on it an arbitrary point P, as
origin, then we can indicate the position of any point P on K by the arc length
PP which we shall denote by s and call the abscissa of P on K. Now consider
a family of circles with centers on K. This family is established when the

following relation is given:
(1) r=J(s)

between the abscissa s of any point P on K and the radius » of the circle with P
as the center. If this family possesses cnvelopes, we can determine one F of
them, when the sign of r in Equation (1) is indicated. In this case [f(s)]is a
one-valued continuous function of s and we may assume further it is differentiable
as regards s such that |f(s)|>0. Next, we denote by @ the angle between
the perpendicular drawn from an arbitrary point P on K to the curve F and
the oriented tangent to K at P. We shall also give 6 the same sign as that of
7,  Then we have the following simple relation among these three quantities »,
s and 0:

(2) dalrl _ —cos 8, sgn(0)=sgn(r).
ds

Now we shall conclude the proof of Theorem 2 in the report (1), 'The pair

of envelopes I, and F. which we already determined in the first half of the proof
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may be represented by the same equation (1). Hence the direction of two per-
pendiculars drawn from any common pitch point to F; and F, evidently coincide
by the relation (2). Thus the theorem is established.

By this discussion we can represent each of an arbitrarily given pair of
profile curves by the same equation (1), The absolute-valued function |f(s)| is
one-valued and continuous as regards s. We assume, after this, that |f(s)| is
differentiable at least twice as regards s such that [f(s)| 3<0.

The equation of any profile curve F* parallel to a given profile curve I with
Equation (1) is given by

(3) =f(s)+a,
where @ represents an arbitrary constant.

Now we may understand from another point of view Equation (1) of the
given profile curve F as the expression giving the length » of the segment PC of
the straight line connecting any point P on K, with C, where K, means the roll-
ing curve and C the drawing point both of which are determined for F’ by The-
orem 3 in the report (I). Let a,=a,(s) be the natural equation of K, and 6
be the angle between the straight line PC and the tangent to K, at P. Then

we have the following relations:

(2) doll_q'l: —cos 8, sgn(8)=sgn(s)
s
and
dd _sinf 1
4 0 _smb L,
(4 ds |r| e
From (4) follows
1 _sinf __do
b} =
(33 ar |v|  ds’
and from (2) we have
(6> O=cos™ {~[f() [}, sgn(0)=sgn(f(s))

and then

(7) sinf=sgn(f(NVI-{f(D]}?, (éf =sgn(f (S))ﬁ% '

Substituting (7) into (4) we can derive the natural equation of K, in the

following form:
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_ _ . fHIV 1= {f()"}
(8> a=ald=ynlled s o) )

FEOVI-{f/(DF
1= {f' (Y = f(s) - f"(8)

Convergely, if the natural equation @,=a,(s) is given at first, then we derive

Equation (1) of the profile curve F corresponding to K, by solving differential
equation (8) for f(s).
§ 2. Necessary and sufficient condition for profile curves (3).

Given Equation (1) for a profile curve F, then in consequence of (2) we
have a necessary condition of the form (9) for f(s):

(9) —1= /()] =1.

Conversely, we can prove that the above condition (9) is sufficient in order that
Equation (1) repsesents a profile curve. For, if (9) be given, we can define
a one-valued continuous (and differentiable) function @ of s using (2), namely,
(6). On the other hand we can determine a curve K, by giving (8) as its
natural equation. Transforming (8) we have (5), accordingly (4). By both
(2) and (4) one point C is determined to K,. When we roll K, along the
pitch curve K, we have a roulette F of the point C as a profile curve with
Equation (1), Thus we have:

Theorem 1. In order that a profile curve be given by the equation
r=f(s), where | f(s) | is one-valusd, continuous and differentiable twice with
regard to s, the arc length of a pitch curve, such that | f(s)| 0, it is
necessary and sufficient that the inequality | f' ()| =1 holds in the given
interval of s

We shall notice that the method used for the proof of sufficiency of Theorem
I can be applied for the analytical proof of the fact that the condition (e) (see
the report (1)) is derived from the condition (b), accordingly (d), and we have
already discussed the fact geometrically.

Expressing Theorem 1 in other words we have

Theorem 2.  Given a family of circles with centers on a curve K whose
radit are given by a function r= f(s) one-valued and differentiable twice with
regard to s, the length of the avc of K. In ovder that the family possesses an
envelope. it is necessary and sufficient that the inequality | f'(s)| < 1 holds in
the given interval of s.
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§ 3. Paths of contact.

Consider an arbitrary straight line 7% and a point P, on it. Let us denote
by I" the locus of the point of contact of the profile curves F; and F: when we
roll the pitch curves K, and K; one along the other keeping them to be always
touching 7, at P,. I is called the path of contact. As the profile curve is
continuous, its path of contact is of course continuous. We can represent I” by
a polar equation

(10) r=g(0), sgn(r)=sgn(6)

using P, as a pole and 7T as an initial line. The radius vector = in this case has
a sign, and the angle @ belongs to some interval contained from —7r to 7. The
function | ¢ (@)] is continuous in this interval.

The path of contact I'* of the profile curve F'* which has the distance &
from the given profile curve F and is parallel to it is given by

11 *=9(0)+a

using the function ¢(@) of Equation (10) which defines the path of contact I” of
F. But in this case sgn(r*)=sgn(0) does not hold necessarily. Comparing
(11) with (10) we have:

The paths of contact of two parallel profile cwives are concoid curves of
each other.

Now if we give the equation of a profile curve F by (1), Equation (10) of
ghe path of contact I' is derived from (1) and (2) by eliminating s. Converse-
ly, if Equation (10) of I" is given, we obtain the equation of F eliminating 6
from (2) and (10).

From now on we shall assume, without loss of generality, that f(s) is a
continuous function with a definite sign and accordingly ¢ (@) is so. The function
¢(0) is not necessarily one-valued as regards 6, although f(s) is so as regards s,
However, when s, a function of 8, obtained by solving (2) is one-valued, continuous
and differentiable, we obtain a one-valued, continuous and differentiable function
g (0) by substituting s into the function f(s), because f(s) is one-valued, con-
tinuous and differentiable (twice) as regards s. Conversely, if g(0) is one-
valued, continuous and differentiable, then there holds the following relation of s
and 0:

ds _ 9'(8)
12 = AP
(12) dae sg.(0) cos @

Accordingly s, the function of 8 given by integration of the right side of (12) as

regards 6, is one-valued, continuous and differentiable, that is, @ is a monotone
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function of s and consequently s of . Hence we have:

Theorem 3. A necessary and sufficient condition that the function g(0)
which defines o path of contact and has a definite sign is one-valued, con-
tinuous and differentiable is that 6 is a continuous monotone function of s and
consequently s of 6.

Now suppose ¢ () is a function which is one-valued, continuous and diffe-
rentiable, then we have its derivative ¢’ () from (12) as follows:

(13) 7 (6)=—sgn.(0) o8 0%; .

We shall divide the range of € into two parts, namely, one part within

0<|f|<-T
2

and the other part within —g—< |6| <a. In the respective inter-

vals, cos@ is always positive or negative, accordingly by (13) the sign of g’ ()

coincides with that of —sgn(ﬂ)%z— or opposite to. Furthermore by Theorem 3

$ is a continuous monotone function in the whole range of 6, so the sign of

—-—3—8« is definite. Hence we have the following fact:

If the function g(0) which defines & path of contact and has a definite
sign is one-valued, continuous and differentiable, then it is necessarily a con-

tinuous monotone function in the respective intervals belonging to the quadrant

0< |0|<% or —"27—< |0'<ar.  And conversely.

8§ 4. Necessary and sufficient conditions for paths of contact.

When the function g(#) defining the path of contact is not one-valued, we
shall divide the range of @ into several intervals and may consider g () is one-
valued in the respective intervals. Tberefore we can from the beginning deal
with a one-valued and continuous function ¢ (6) without loss of generality.

Now suppose a pair of pitch curves are given and besides a curve
I'—r=g(6)— is taken. We shall discuss whether a pair of profile curves
having I' as its path of contact may exist or not, at this time, however, we
assume that ¢(8) is a one valued, continuous and differentiable function with a
definite sign, This problem is equivalent to the determination of the condition
that such a quantity may be determined as it satisfies the relation (2) for the
pair of quantities r and @ given by Equation (10), and that moreover at this
time the function obtained by eliminating 6 from (2) and (10) may become a

one-valued continuous function of s.
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If, indeed, I" is the path of contact, then as we have explained in § 3,
Equation (12) holds and s is a continuous, differentiable and monotone function
of @ (and consequently @ of s).

Conversely, when the right side of Equation (12) is integrable, then from
it we can derive a function s which is one-valued and differentiable as regards 6,
and denote it by s=s(f#). Next, in order that one-valued and continuous
function »=f(s) can be derived from one-valued continuous functions r=g(8)
and s=35(0#) by eliminating @ it is sufficient that the inverse function of s(8),
say 0=6(s), is one-valued and continuous, that is, s is a continuous monotone
fnnction of @ (and consequently 6 of s). Thus we have the following:

Theorem 4. In order that « path of contact for a pair of profile curves
be given by a function r=g(8) which is one-valued, continuwous and differen-
tiable and has a definite sign, it is necessary and sufficient that g(0) be o
continuous monotone function in the respective partial intervals belonging to
the quadrant 0< 0| < or ——< |6|<m, and the function 9O 5 inte-

2 2 cos 6
grable in the whole range.

Now we may understand from another point of view that Equation (10) of
the path of contact I" is the expression giving the relation between + and 6, in
which r is the length of the segment of the straight line connecting any point P
on the rolling curve K, determined to the profile curve F with the drawing point
C, and @ is the angle between the straight line PC and the tangent to I, at P.
Let @, be the radius of curvature of K. at P, then from (5) and (2) it follows

1 _sing | cosf
(14) a || dr]
do

On the other hand, however, the quantity a. given by (14) is the length
measured from the pole P, to the point M along the straight line N, drawn
passing through P, perpendicularly to the initial line 7%, where M is the point of
intersection of N, and the normal CM drawn to the curve I" at any point C(r, 6)
on I'.  Hence we have

Theorem 3.  Let N, be the perpendicular drawn to the initial line Ty at
the pole Py. The length of the segment of N, between Py and the point M at
which the normal to the path of contact I' at any point C on I intersects with
N, is equal to the radius of curvature of the rolling curve K, at the pitch point
corresponding to C.

Move the rolling curve K, keeping it to be always touching the straight line
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T, at the point P,. It would be easily understood that the locus of the drawing
point C fixed at K, is the path of contact. In this case the evolute of K, ,
denoted by IV, , makes a rolling contact motion by Theorem 5 along the straight
line N, drawn perpendicularly to 7} passing through P,, in other words: the
roulette I" drawn by the point C at the rolling motion of the curve IV, along N,
is the very path of contact. Consequently we have the following characterization
of a profile curve and its path of contact:

Any profite curve and its path of contact characterized as the roulettes of
the same one point which is fized at a suitably taken curve K, and its evolute
N, , when K, and N, voll without sliding along the pitch curve K and an
arbitrarily determined normal of K respectively.

Let a,=a, (s) be the natural equation of the curve K, and assume the funec-
tion a, (s) is differentiable, then the natural equation af =a, (s*) of N, is given

in the form:
st*=a,(s), aF=0a(8)a’(s).

In conclusion I express my hearty thanks to Prof, T. Kubota, M.J.A., who
has given me kind guidance for the researches, and in addition I am obliged to

him for communicating this paper.



