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17. Fundamental Theory of Toothed Gearing (II).
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Department of Applied Dynamics, T6hoku Univer y, Sendal.

(Comm. by T. KUBOTA, M.J.A., Feb. 12, 1949.)

Assume that a curve K is oriented to a certain direction. Take any two

point.s P0 and P on K. We say that the arc length PoP is positive or negative

according as P exists at the positive side or negative side of Po. The orientation

of the tangent to/( at any point may be defined in usual manner in accordance

with that of K. Let C be an arbitrary point. We give t,he length of the segment

_PC of the straight line connecting P witl C a positive or negative sign according

as 0 exists on the left side or right side of the tangent to K at P. Referrir).g to,

a pair of pitch curves li7 and K we shall assume that they are oriented in the

same sense, hat is, the common angent at every instant has the same sense even

if observed as a tangent of

1. Analytical representation of profile curves.

Given an oriented curve 1 and determined on it an arbitrary poin P0 as

origin, then we can indicate the position of any poin P on K by the arc length

/-’0P whick we shall denote by s and call the abscissa of P on K’. Now consider

a family of circles witla centers on K. This family is established when the

following relation is given"

( 1 )

between the abscissa s of any point P on K and the radius

as the center. If this family possesses envelopes, we can determine one F of

them, when the sign of " in Equation (1) is indicated. In this case If(s)] is a

one-valued contimous function of s and we may assume further it is differentiable

as regards s such tha If(s)l 0. Next, we denote by 0 the angle between

the perpendicular drawn from an arbitrary point P on /( to the curve / and

the oriented tangent to K at /9. We shall also give 0 the same sign as that of

9". Then we have the following simple relation among these three quantities 9",

s and 0:

( 2 ) dl’___ =_cos0, sgn(O)=sg9z(’),
ds

Now we shall conclude the proof of Theorem 2 in the report (I). The pair

of envelopes F and F which we already determined in the first half of the proof
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may be represented by the same equation (1). Hence the direction of two per-

pendiculars drawn from any common pitch point to F1 and F,o evidently coincide

by tle relation (2). Thus the theorem is established.

By this discussion we can represent each of an arbitrarily given pair of

profile curves by the same equation (1). The absolute-valued function If(s) is

one-valued and continuous as regards s. We assume, after this, that ]f(s)l is

differentiable at least twice as regards s such that If(s)l o.
The equation of any profile curve F; parallel to a given profile curve Fwith

Equation (1) is given by

( 3 ) +.,

where a represents an arbitrary constant.

Now we may mderstand from another point of view Equation (1) of the

given profile curve F as the expression giving the length r of the segment PC of

the straight line connecting any point P on K, with C, where K, means the roll-

ing curve and C the drawing point both of which are determined or/ by The-

orem 3 in the report (I). Let a,--a(s) be the natural equation of /d’ and

be the angle between the straight line .PC md the tangent to K, at P. Then

ve have the following relations:

ds

From (4=) follows

and from (2) we have

(6)

dO sin 0 1

t=cos-’{--If(s) l’}, sgn(a)=sg,(f(s))

.and then

( 7 ) sin O=sgn(f(s))l/1-- {If(s)]’} dO --sgn(f (s))l/dS --{ f(s)

Substituting (7) into (4) we can derive the natural equation of K in the

following form"
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(8)

:t {if(s)}- f(s). f"(s)

Conversely, i the atural equation a,.=a,,(s) is given at first, then we derive

Equation (1) of the profile curve corresponding to K, by solving differential

equation (8) for f(s).

2. Necessary and sufficient condition for profile curves (3).
Given Equation (1) for a profile curve F then in consequence of (2) we

have a necessary condition of the form (9) for f(s):

Converse]y we can prove that the above condition (9) is sufficient in order that

Equation (1) repsesents a profile curve. For, if (9) be given, we can define

a one-valued continuous (and differentiable) function 8 of s using (2), namely

(6). On the other hand we can determine a curve/(. by giving (8) as its

natural equation. Transforming (8) we have (5), accordingly (4:). By both

(2) and (g) one poin C is determined to K. When we roll K along the

pitch curve /’, we have a roulette ’ of the point C as a profile curve with

Equation (1). Thus we have"

Theorem 1. In o’de" tha a profile curve be given by the equation

’=f(s), ohere lf(s) is one.valusd, continuous and dij]e’entiable toice with

regm’d to s, the arc length of a pitch cm’ve, such that ]f(s)i 0, it is

necessm’y and sucient that the inequality ]f(s)l 1 holds in the given
inteq’val of s.

We shall noice that the method used for the proof of sufficiency of Theorem

I can be applied for the analytical proof of the fact that the condition (e) (see
the report (I)) is derived from the condition (b), accordingly (d), and we have

already discussed the fact geometrically.

Expressing Theorem 1 in other words we have

Theorem 2. Given a family of ci’cles vith center’s on a cuq’ve K whose
q’adii aq’e given by a function q’=f(s)one-valued and di]]erentiable twice with

q’egaq’d to s, the length of the aq’c of K. In oq’de" that the family possesses an

enveloTe, it is necessm’y and szlYicient that the inequality If’ (s)l =<= 1 holds 4n
the given intevval of s.
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3. Paths of contact.

Consider an arbitrary straight line T0 and a point P0 on it. Let us denote

by F the locus of the point of contact of the profile curves F1 and F: when we

roll the pitch curves K1 and K2 one along the other keeping them to be always

touching To af P0. F is called the path of contact. As the profile curve is

continuous, its path of contact is of course continuous. We can represent F by

a polar equation

(10) q’=g(O), sgn(q’)=sgn(O)

using P0 as a pole and To as an initial line. The radius vector t" in this case has

a sign, and the angle t? belongs to some interval contained from -- to -. The

function [g(t?)l is continuous ia this interval.

The path of contact F* of the profile curve * which has the distance a

from the given profile curve F and is parallel to it is given by

(II) q*=g(O)+a

using the function g (8) of Equation (10) which defines the path of contact F of

/v. But in this case sgn (t’*)---- sgn() does not hold necessarily. Comparing

(11 with (10 we have:

The paths of contact of two ia’allel 2q’ofile cwrves aq’e concoid cuq’es of
each otheq’.

Now if we give the equation of a profile curve F by (1), Equation (10) of

the path of contac F is derived from (1 and (2) by eliminating s. Converse-

ly, if Equation (10) of F is given, we obtain the equation of eliminating

 rom (to).
From now on we shall assume, without loss of generality, that f(s) is a

continuous function with a definib sign and accordingly g() is so. The function

g (0) is not necessarily one-valued as regards , although f(s) is so as regards s,

However when s, a function of , obtained by solvilig (2) is one-valued, continuous

and differentiable, we obtain a one-valued, continuous and differentiable unction

g(O) by substituting s into the function f(s), because f(s) is one-valued, con-

tinuous and differentiable (twice) as regards s. Conversely, if g(O) is one-

valued, continuous and differentiable, then there holds the following relation of s

and "
(1) as _--s(O)

dO cos 0

Accordingly s, the function of t given by integration of the right side of (12) as

regards 0, is one-valued, continuous and differentiable, that is, is a monotone
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function of and consequently s of 0. Hence we have"

Theorem 3. A nece,ssaq’y and sucient condition that the function
which defines a path of contact and has a definite sign is one-valued, con-

tinuous and die,rentiable is that 0 is a continuous monotone function of s and

consequently s of O.

Now suppose g (0) is a function which is one-valued, continuous and diffe-

rentiable, then we have its derivative gr () from (12) as follows"

(13)

We shall divide tle range of into two parts, namely, one part within

0 <: [] <: and the other part vithin < Iel<:r. In the respective inter-
2 2

vals, cosO is always positive or negative, accordingly by (13) the sign of g()
coincides with that of --sgn(O)- or opposite to. Furthermore by Theorem 3

s is a continuous monotone function in he whole range of O, so he sign of

d___s, is definite. Hence we have the following fact"
dO

If the function g(O) vh,ich defines a path of cow,tact ad has a definite
sign is one-valued, continuous and die’entiable, then it is necessaq’ily a con-

tinuous monotone fanction in the ’espective inte,’rds belonging to the quad,’ant

t) ,, ]01 < --- or -< I0 <,rr. And conve’sely.
2 2

4. Necessary and sufficient conditions for paths of contact.

When the function g(O) defining the path of contact is not one-valuecl, we

shall divide the range of 0 into several intervals and may consider g (0) is one-

valued in the respective intervals. Tberefore we can from the beginning deal

with a one-valued and continuous function g(O) without loss of generality.

Now suppose a pair of pitch curves are given and besides a curve

F’=g(O) is taken. We shall discuss wlefier a pair of profile curves

having F as its path of contact may exist or not, at this time, however, we

assume that g(O) is a one valued, continuous and differentiable function with a

definite sign. This problem is equivalent to the determination of the condition

that such a quantity may be determined as it satisfies the relation (2) for the

pair of quantities " and 0 given by Eluation (10), and that moreover at this

gime the unction obtained by eliminating 0 from (2) and (10) may become a

one-valued continuous function of s.
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If, indeed, /’ is the path of contact, then as we have explained in 3,
Equation (12) holds and s is a continuous, differentiable and monotone function

of 0 (and consequently 0 of s).
Conversely, when the right side of Equation (12) is integrable, then from

it we can derive a function s which is one-valued and differentiable as regards 0,
and denote it by s=s(O). Next, in order that one-valued and continuous

function ’=f(s) can be derived from one-valued continuous functions ’=y(0)
and s=s(O) by eliminating 0 it is sufficien that the inverse functioa of s(O),
say O=O(s), is one-valued and continuous, tha is, s is a continuous monotone

fnnction of 0 (and conquently 0 of s). Thus we have the followi:
Theorem 4. N, o’der that a patl of contact for a pair of p’ofile cuwes

given by a function ’=g(0) which is one-wlued, continue)us and diffe’en-
tiable and has a definite sign, it is nece8sa’y and sucient that g(O) be a

continuous monotone function in the ’espective pa’tial intewals belonging to

2 2 cos 0

g’able in the whole unge.

Now we may understand from another point of view that Equation (10) of

the path of contact F is the expression giving the relation between q" and 0, in

whicL " is the lengtl of the seg’men of the straight line connecting any point P
on the rolling curve 1 determined to tle profile curve F with the drawi point

C, and is the angle between tim straiglt line PC and the tangent to I(, at P.

Let a be the radius of curvature of 1(,. at P, then from (5) and (2) it ollows

1 sin0 + cos0
(14=) a,. ’l -"d
On the other hand, however, the quantity ar given by (14=)is the length

neasured from the pole P0 to the point M along the straight line 2’ drawn

passing through P0 perpendicularly to the initial line To, where M is the point of

intersection of No and the normal CM drawn to the curve F at any point C(% 0)
on I’. Hence we have

Theorem 3. Let No be the pe’pendcula" d’awn to the initial line To at

the pole Po. The length of the segment of No between Po and the point M at

which the no’,mal to the 3oath of contact 1-’ at any point C on F 4nteq’sects with

No is equal to the ’adius of cu’vatuq’e of the q’oling c,uq’ve K at the pitch point

co’’esponding to C.
Move the rolling curve/( keeping it to be always touching the straight line
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T0 at the point P0. It would be easily understood that the locus of the drawing

point C fixed at l(r is the path of contact. In this case the evolute of K,.,
denoted by 2Vr, makes a rolling contact motion by Theorem 5 along the straight

line -No drawn perpendicularly to T0 passing throgh P0, in other words: the

roulette F dravn by the point C at the rolling motion of the curve

is the very path of contact. Consequently we have the following characterization

of a profile curve and its path of contact:

Any 29’ofite cu’e and its 2ath of contact characte’ized as the, ’oulettes of
the same one 2oint vhich is fixed at a suitably taken cu’e Kr and ts eolte

N,, vhe K, and V, ’oll vithout sliding along the gitch cu’ee K and a,

a’bit’a’ily deter’mined no,’mal of K ’es2ectieely.
Let a=a, (s) be the natural equation of the curve K. and assume the func-

tion a (s) is differentiable, then the natural equation a =a. (s*) of N. is given

in the form"

In conclusion I express n]y hearty thanks to Prof. T. Kubota, ./[.A. who

has given me kind guidance for the researches, and in addition I am obliged to

him for communicating this paper.


