1. On Riemannian Spaces Admitting a Family of Totally Umbilical Hypersurfaces. I.

By Tyuzi Adati.

(Comm. by Z. SUETUNA, M.J.A., Jan. 12, 1951.)

§1. Let V_n be an *n*-dimensional Riemannian space with the fundamental tensor $g_{\lambda\mu}$ ($\lambda,\mu,\nu,\ldots = 1, 2,\ldots, n$) and assume that there exists a family of totally umbilical hypersurfaces

(1.1)
$$\sigma(x^{\lambda}) = \text{const.}.$$

If we denote the parametric representation of its hypersurfaces by $x^{\lambda} = x^{\lambda}(x^{i}) \quad (i,j,k,\ldots = 1,2,\ldots,n-1),$

then from (1.1) we have by differentiation with respect to x^i

$$\sigma_{\lambda}B_{i}^{\lambda}=0,$$

where $\sigma_{\lambda} = \frac{\partial \sigma}{\partial x^{\lambda}}, \ B_i^{\lambda} = \frac{\partial x^{\lambda}}{\partial x^i}.$ Furthermore, differentiating

with respect to x^{j} , we have

$$\sigma_{\lambda;\mu} B_i^{\cdot\lambda} B_j^{\cdot\mu} + \sigma_{\lambda} H_{ij}^{\cdot\cdot\lambda} = 0,$$

where H_{ij}^{λ} is an Euler-Schouten's curvature tensor. If we denote the fundamental tensor and normals of the hypersurfaces by g_{ij} and B^{λ} respectively, we have, because of $H_{ij}^{\lambda} = Hg_{ij} B^{\lambda}$,

 $\sigma_{\lambda;\mu} B_i^{\lambda} B_j^{\mu} + H \sigma_{\lambda} B^{\lambda} g_{ij} = 0,$

from which follows

$$(\sigma_{\lambda;\mu} + H\sigma_{\nu} B^{\nu} g_{\lambda\mu}) B_{j}^{\cdot\lambda} B_{j}^{\cdot\mu} = 0.$$

Consequently $\sigma_{\lambda;\mu}$ must take the form

(1.2)
$$\sigma_{\lambda;\mu} = \rho g_{\lambda\mu} + v_{\lambda} \sigma_{\mu} + v_{\mu} \sigma_{\lambda},$$

where $\rho = -H\sigma_{\nu} B^{\nu}$ and v_{λ} is a certain vector.

Conversely, if (1.2) holds, we know easily that the hypersurfaces $\sigma(x^{\lambda}) = \text{const.}$ are totally umbilical.

Differentiating (1.2) and substituting the resulted equations in Ricci identities $\sigma_{\lambda;\mu\nu} - \sigma_{\lambda;\nu\mu} = -\sigma_{\omega} R^{\omega}_{\lambda\mu\nu}$, we have

(1.3)
$$-\sigma_{\omega} R^{\omega}_{\lambda\mu\nu} = \{ (\rho_{\nu} - \rho v_{\nu}) g_{\lambda\mu} - (\rho_{\mu} - \rho v_{\mu}) g_{\lambda\nu} \} \\ + \{ (v_{\lambda;\nu} - v_{\lambda} v_{\nu}) \sigma_{\mu} - (v_{\lambda;\mu} - v_{\lambda} v_{\mu}) \sigma_{\nu} \} + \sigma_{\lambda} (v_{\mu;\nu} - v_{\nu;\mu}) .$$

If we put $\sigma_{\lambda} = \sqrt{\sigma^{\mu}\sigma_{\mu}}B_{\lambda}$, where $\sigma^{\mu}\sigma_{\mu} = g^{\mu\nu}\sigma_{\mu}\sigma_{\nu}$ and $B_{\lambda} = g_{\lambda\nu}B^{\nu}$, we have from (1.3)

T. Adati.

(1.4)
$$B_{\omega}B^{\nu}B_{j}^{\lambda}B_{k}^{\mu}R_{\lambda\mu\nu}^{\omega} = \frac{-1}{\sigma^{\mu}\sigma_{\mu}}\sigma^{\nu}(\rho_{\nu}-\rho v_{\nu}) g_{jk} + B_{j}^{\lambda}B_{k}^{\mu}(v_{\lambda;\mu}-v_{\lambda} v_{\mu}).$$

On the other hand, according to Gauss equations, we have

 $R^i_{,\,jk\hbar} = B^{i\mu\nu\omega}_{\lambda jk\hbar} R^\lambda_{,\mu\nu\omega} + H^2 \left(g_{jk} \, \delta^i_\hbar - g_{j\hbar} \, S^i_h
ight),$

where R_{jkh}^{i} is the curvature tensor of the hypersurfaces and $B_{\lambda jkh}^{i\mu\nu\omega} = B_{\lambda}^{i} B_{j}^{\mu} B_{k}^{\nu} B_{k}^{\omega}$. Summing for *i* and *h*, we have

$$R_{jk} = (\delta^{\omega}_{\lambda} - B_{\lambda} B^{\omega}) B_{j}^{\mu} B_{k}^{\nu} R^{\lambda}_{,\mu\nu\omega} + (n-2) H^{2} g_{jk}$$

= $B_{j}^{\mu} B_{k}^{\nu} R_{\mu\nu} - B_{\lambda} B^{\omega} B_{j}^{\mu} B_{k}^{\nu} R^{\lambda}_{,\mu\nu\omega} + (n-2) H^{2} g_{jk}.$

Substituting (1.4), we obtain

(1.5)
$$R_{jk} = B_j^{\mu} B_k^{\nu} R_{\mu\nu} - B_j^{\lambda} B_k^{\mu} (v_{\lambda;\mu} - v_{\lambda} v_{\mu}) + \{(n-2)H^2 + \frac{1}{\sigma^{\mu}\sigma_{\mu}} \sigma^{\nu} (\rho_{\nu} - \rho v_{\nu})\} g_{jk}.$$

Putting $v_{\lambda}B_{j}^{\lambda} = v_{j}$ and differentiating with respect to x^{k} , we have

$$v_{\lambda;\mu} B_j^{\lambda} B_k^{\mu} + v_{\lambda} H_{jk}^{\lambda} = v_{j;k},$$

from which follows

$$v_{\lambda;\mu} B_j^{\lambda} B_k^{\mu} = v_{j;k} - v_{\lambda} B^{\lambda} H g_{jk}$$

Thus (1.5) takes the form

(1.6)
$$R_{jk} = B_j^{\mu} B_k^{\nu} R_{\mu\nu} + v_j v_k - v_{j;k} + \beta g_{jk}$$

Since $v_{j;k} = v_{k;j}$, we find that v_j is a gradient vector. Now we put

$$\Pi_{\lambda\mu} = -\frac{R_{\lambda\mu}}{n-2} + \frac{Rg_{\lambda\mu}}{2(n-1)(n-2)}$$

and assume that $\Pi_{\lambda\mu}$ takes the form

(1.7)
$$II_{\lambda\mu} = ug_{\lambda\mu} + \zeta_{\lambda} \sigma_{\mu} + \zeta_{\mu} \sigma_{\lambda,\mu}$$

where u is a scalar function of x^{λ} and ζ_{λ} a certain vector. In this case, directions orthogonal to the vectors σ_{λ} and ζ_{λ} are Ricci principal directions. Substituting $R_{\lambda\mu}$ obtained from (1.7) in (1.6), we have the equations of the form

(1.8)
$$R_{jk} = \gamma g_{jk} + v_j v_k - v_{j;k}.$$

Thus we have

Theorem 1.1. In order that the tensor $\Pi_{\lambda\mu}$ of a space admitt-

[Vol. 27,

2

On Riemannian Spaces.

No. 1.]

ing a family of ∞^1 totally umbilical hypersurfaces $\sigma(x^{\lambda}) = \text{const.}$ takes the form

$$II_{\lambda\mu} = ug_{\lambda\mu} + \zeta_{\lambda}\sigma_{\mu} + \zeta_{\mu}\sigma_{\lambda} \qquad \left(\sigma_{\lambda} = \frac{\partial\sigma}{\partial x^{\lambda}}\right),$$

it is necessary and sufficient that the Ricci tensors of the hypersurfaces take the form

 $R_{jk} = \gamma g_{jk} + v_j v_k - v_{j;k} ,$

where v_j is a certain gradient vector.

Especially when tangential directions of the hypersurfaces are all Ricci directions, (1.7) takes the form

(1.9)
$$\Pi_{\lambda\mu} = u g_{\lambda\mu} + \kappa \sigma_{\lambda} \sigma_{\mu} \, .$$

Thus we have

Cor. 1. If tangential directions of the totally umbilical hypersurfaces $\sigma(x^{\lambda}) = \text{const.}$ are Ricci principal directions, then (1.8) holds.

Cor. 2.²⁾ In an Einstein space admitting totally umbilical hypersurfaces $\sigma(x^{\lambda}) = \text{const.}$ (1.8) holds.

§2. Assuming that (1.7) holds, we shall calculate the scalar curvature \overline{R} of the totally umbilical hypersurfaces $\sigma(x^{\lambda}) = \text{const.}$. From (1.5) we have

(2.1)
$$\overline{R} = g^{jk} R_{jk} = g^{jk} B_j^{\mu} B_k^{\nu} R_{\mu\nu} - (g^{\lambda\mu} - B^{\lambda} B^{\mu}) (v_{\lambda;\mu} - v_{\lambda} v_{\mu}) + (n-1) \{ (n-2) H^2 + \frac{1}{\sigma^{\mu} \sigma_{\mu}} \sigma^{\nu} (\rho_{\nu} - \rho v_{\nu}) \}.$$

Since we have from (1.7)

$$R_{\mu\nu} = \left\{\frac{R}{2(n-1)} - (n-2)u\right\}g_{\mu\nu} - (n-2)\left(\zeta_{\mu}\sigma_{\nu} + \zeta_{\nu}\sigma_{\mu}\right),$$

we obtain

(2.2)
$$g^{jk}B_{j}^{\nu}B_{k}^{\nu}R_{\mu\nu} = \frac{R}{2} - (n-1)(n-2)u.$$

Moreover, from (1.3) we have

$$-\sigma_{\omega}R^{\omega}_{,\nu} = (n-1)(\rho_{\nu}-\rho v_{\nu}) + \sigma^{\lambda}(v_{\lambda;\nu}-v_{\lambda}v_{\nu}) - g^{\lambda\mu}(v_{\lambda;\mu}-v_{\lambda}v_{\mu})\sigma_{\nu} + \sigma^{\lambda}(v_{\lambda;\nu}-v_{\nu;\lambda}).$$

Multiplying by σ^{ν} and summing for ν , we obtain

(2.3)
$$-\sigma^{\nu}\sigma^{\nu}R_{\nu\nu} = (n-1)\sigma^{\nu}(\rho_{\nu}-\rho v_{\nu}) - \sigma^{\nu}\sigma_{\nu}(g^{\lambda\mu}-B^{\lambda}B^{\mu})(v_{\lambda;\mu}-v_{\lambda}v_{\mu}).$$

However, because of (1.7), we have

T. ADATI.

$$\sigma^{\omega}\sigma^{\nu}R_{\omega\nu} = \left\{\frac{R}{2(n-1)} - (n-2)u - 2(n-2)\sigma^{\mu}\zeta_{\mu}\right\}\sigma^{\nu}\sigma_{\nu}.$$

[Vol. 27,

On the other hand, multiplying (1.7) by $g^{\lambda\mu}$ and summing for λ and μ , we have

$$-\frac{R}{2(n-1)}=nu+2\sigma^{\mu}\zeta_{\mu}.$$

Thus we have

$$\sigma^{\omega}\sigma^{\nu}R_{\omega\nu} = \left(\frac{R}{2} + (n-1)(n-2)u\right)\sigma^{\nu}\sigma_{\nu}.$$

Substituting in (2.3), we have

(2.4)
$$-(g^{\lambda\mu}-B^{\lambda}B^{\mu})(v_{\lambda;\mu}-v_{\lambda}v_{\mu})+\frac{n-1}{\sigma^{\mu}\sigma_{\mu}}\sigma^{\nu}(\rho_{\nu}-\rho v_{\nu})$$
$$=-\frac{R}{2}-(n-1)(n-2)u.$$

Substituting (2.2) and (2.4) in (2.1), we obtain

 $\overline{R} = (n-1)(n-2)(-2 u+H^2).$

When V_n is an Einstein space, (1.7) becomes

$$(2.5) II_{\lambda,\mu} = u g_{\lambda,\mu}$$

and consequently $u = -\frac{R}{2n(n-1)}$, from which follows

$$\bar{R} = (n-1)(n-2)\Big(\frac{R}{n(n-1)} + H^2\Big).$$

If $n \ge 3$, R=const.. Since normals of the hypersurfaces $\sigma = \text{const.}$ are Ricci directions, also H=const.. Thus we have

Theorem 2.1.²⁾ In an Einstein space admitting a family of totally umbilical hypersurfaces, the mean curvature and scalar curvature of the hypersurfaces are constant on the hypersurfaces.

 \S 3. From the theorem 1.1 we have readily

Theorem 3.1. In a space admitting a family of totally umbilical hypersurfaces $\sigma(x^{\lambda}) = \text{const.}$, if the tensor $\Pi_{\lambda\mu}$ takes the form (1.7)

$$\Pi_{\lambda\mu} = ug_{\lambda\mu} + \zeta_{\lambda}\sigma_{\mu} + \zeta_{\mu}\sigma_{\lambda}$$

and the hypersurfaces $\sigma(x^{\lambda}) = \text{const.}$ are all Einstein spaces, the equations of the form

$$v_{i;j} = a g_{ij} + v_i v_j$$

hold, that is to say, the hypersurfaces admit a concircular transformation.³⁾

No. 1.]

When we replace (1.7) by (1.9)

$$II_{\lambda\mu} = u g_{\lambda\mu} + \kappa \sigma_{\lambda} \sigma_{\mu}$$

and also by (2.5)?)

$$\Pi_{\lambda\mu} = u g_{\lambda\mu} \qquad (V_n \text{ is an Einstein space}),$$

the theorem holds.

Next we consider the case when the totally umbilical hypersurfaces $\sigma = \text{const.}$ are conformally flat. We assume n > 3 and put

$$II_{jk} = -\frac{R_{jk}}{n-3} + \frac{R g_{jk}}{2(n-2)(n-3)}.$$

From (1.8) we have

$$(3.1) (n-3)II_{jk} = v_{j;k} - v_j v_k + \tau g_{jk},$$

where τ is a certain scalar. Since

 $\Pi_{j[k;l]} = 0, \qquad v_{j;kl} - v_{j;lk} = -v_m R^m_{.jkl},$

we have

$$(3.2) -v_m R^m_{jkl} - (v_{j;l}v_k - v_{j;k}v_l) + (\tau_l g_{jk} - \tau_k g_{jl}) = 0.$$

However

$$v_m R^m_{.jkl} = v_m \left(-\Pi_{jk} \, \delta^m_k + \Pi_{jl} \, \delta^m_k - g_{jk} \, \Pi^m_{.l} + g_{jl} \, \Pi^m_{.k} \right)$$

= $-\Pi_{jk} \, v_l + \Pi_{jl} \, v_k - g_{jk} \, v_m \Pi^m_{.l} + g_{jl} \, v_m \Pi^m_{.k}.$

Substituting (3.1), we have

$$egin{aligned} &v_m R^m_{.jkl} = -rac{1}{n\!-\!3} \{ (v_{j;k} v_l \!-\! v_{j;l} v_k) \!+\! g_{jk} \left(2 au v_l \!-\! v^m v_m v_l \!+\! v^m v_{m;l}
ight) \!-\! g_{jl} \left(2 au v_k \!-\! v^m v_m v_k \!+\! v^m v_{m;k}
ight) \!+\! s^m v_{m;l}
ight) \!-\! g_{jl} \left(2 au v_k \!-\! v^m v_m v_k \!+\! v^m v_{m;k}
ight) \!\}. \end{aligned}$$

Consequently (3.2) becomes

$$(3.3) \qquad (n-2) (v_{j;l}v_k - v_{j;k}v_l) + \{(n-3)\tau_k + 2\tau v_k - v^m v_m v_k \\ + v^m v_{m;k} \} g_{jl} - \{(n-3)\tau_l + 2\tau v_l - v^m v_m v_l + v^m v_{m;l} \} g_{jk} = 0.$$

Multiplying by g^{jl} and summing for j and l, we have

$$(3.4) \qquad (g^{jl}v_{j;l}+2\tau-v^{m}v_{m})v_{k}+(n-3)\tau_{k}=0.$$

Multiplying (3.3) by v^{j} and summing for j, we have

$$(3.5) (v^{j}v_{j;l}v_{k}-v^{j}v_{j;k}v_{l})+(\tau_{k}v_{l}-\tau_{l}v_{k})=0.$$

From (3.4) and (3.5) we find that τ_k and $v^j v_{j;k}$ are proportional to v_k . Hence from (3.3) we get the equations of the form

$$v_{j_k} = a g_{jk} + b v_j v_k.$$

T. ADATI.

Consequently (3.1) takes the form

$$II_{jk} = p \, \boldsymbol{g}_{jk} + q \, \boldsymbol{v}_j \, \boldsymbol{v}_k \,,$$

from which follows that v^{j} represents Ricci directions, namely the hypersurfaces $\sigma = \text{const.}$ admit concircular transformations.

Since a conformally flat space admitting a concircular transformation is a subprojective space of B. Kagan,^{1), 4}) we get

Theorem 3.2. In a space admitting a family of totally umbilical hypersurfaces $\sigma(x^{\lambda}) = \text{const.}$, if the tensor $II_{\lambda\mu}$ takes the form (1.7)

$$\Pi_{\lambda\mu} = u g_{\lambda\mu} + \zeta_{\lambda} \sigma_{\mu} + \zeta_{\mu} \sigma_{\lambda}$$

and the hypersurfaces are conformally flat, then these hypersurfaces are subprojective in the sense of Kagan (n > 3).

When we replace (1.7) by (1.9) and also when V_n is an Einstein space,²) the theorem holds.

References.

1) T. Adati: On Subprojective Spaces. Not yet published.

2) Y.C. Wong: Family of totally umbilical hypersurfaces in an Einstein space. Annals of Math., 44 (1943), 271-297.

3) K. Yano: Concircular Geometry I. Proc. Imp. Acad. Tokyo, 16 (1940) 195-200.

4) K. Yano and T. Adati: On certain spaces admitting concircular transformation. To be published in Proc. Jap. Acad.