14. On the Type of an Open Riemann Surface.

By Tadashi KURODA. Mathematical Institute, Faculty of Science,

Tôhoku University.

(Comm. by K. KUNUGI, M.J.A., Feb. 12, 1951.)

1. Let F' be an open abstract Riemann surface and I be its ideal boundary. Suppose that $F_n(n = 0, 1, ...)$ is the relatively compact (shlicht or non) subdomain of F satisfying the following four conditions:

1°) F_o is simply and $F_n(n \neq 0)$ is finitely connected,

 2°) $F_n \subset F_{n+1}$,

3°) if Γ_n is the boundary of F_n , Γ_n consists of a finite number of analytic closed curves and $\Gamma_n \cap \Gamma_{n+1} = 0$,

4°) $\bigvee_{n=0}^{\infty} F_n = F$.

Putting $R_n = F_n - \vec{F}_o$, the boundary of R_n consists of Γ_n and Γ_o . Let P be the inner point of R_n and denote by $\omega_n = \omega_n$ (Γ_n, P, R_n) the harmonic measure of Γ_n at P with respect to the domain R_n . Then we call

$$D\left(oldsymbol{\omega}_n
ight) = \iint\limits_{\mathcal{K}_n} igg[\Big(rac{doldsymbol{\omega}_n}{dx} \Big)^2 + \Big(rac{doldsymbol{\omega}_n}{dy} \Big)^2 igg] dx dy\,, \qquad t=x+iy\,,$$

the Dirichlet integral of ω_n with respect to the domain R_n , where t is the local parameter.

R. Nevanlinna [3] has proved the following:

Theorem. The ideal boundary Γ of the Riemann surface F is of harmonic measure zero if and only if $\lim D(\omega_n) = 0$.

2. Let u be the harmonic function in the domain R_u such that

$$u = \begin{cases} 0 & \text{on } \Gamma_o, \\ \log \mu_n & \text{on } \Gamma_n & (\mu_n > 1), \end{cases}$$

and, if v is the conjugate harmonic function of u, then the total variation on Γ_o equals to 2π , i.e.,

$$\int_{\Gamma_o} dv = 2\pi \,.$$

In this case we call $\log \mu_n$ the modul of the domain R_n . We shall show the following:

Theorem 1. Let $\log \mu_n$ be the modul of R_n and ω_n be the harmonic measure of Γ_n with respect to R_n . Then we have T. KURODA.

[Vol. 27,

$$\log \mu_n = rac{2\pi}{D(\omega_n)}$$
.

Proof. Let $\bar{\omega}_n$ be the conjugate harmonic function of ω_n . Then it is easily seen that

$$D(\omega_n) = \int_{\Gamma_o} d\bar{\omega}_n = \int_{\Gamma_o} \frac{d\omega_n}{d\nu} ds$$
,

where ν is the outer normal, ds is the line-element of Γ_o and the integral is taken in the positive sense of Γ_o with respect to F_o .

We consider the harmonic function

$$u=\frac{2\pi}{D(\boldsymbol{\omega}_n)}\,\boldsymbol{\omega}_n$$

and denote its conjugate harmonic function by v. Then we get

$$\int_{\Gamma_o} dv = \int_{\Gamma_o} \frac{du}{d\nu} ds = \frac{2\pi}{D(\omega_n)} \int_{\Gamma_o} \frac{d\omega_n}{d\nu} ds = 2\pi .$$

Since u = 0 on Γ_o and $u = \frac{2\pi}{D(\omega_n)}$ on Γ_u , we obtain, from the definition of the modul,

$$\log \mu_n = \frac{2\pi}{D(\omega_n)}.$$
 (q.e.d.)

From this and Nevanlinna's theorem we can easily show the following:

Theorem 2. The ideal boundary I of the Riemann surface F is of harmonic measure zero if any only if $\lim \mu_n = \infty$.

Remark. A. Pfluger [4] has shown only the sufficiency of this condition.

3. We suppose that we can define a conformal metric on F by the line-element

$$ds = \lambda(t) |dt|,$$

where t = x + iy is the local parameter and $\lambda(t)$ a single-valued, positive function of t. We can suppose here that the line-element ds is invariant for any conformal transformation and the distances between a fixed point P on F and ideal boundary points of F are infinite and finally that the distances between P and inner points of F are finite.

By F_{ρ} we denote the set of points such that the distance between any point of F_{ρ} and the point P is less than ρ ($0 < \rho < \infty$) and by Γ_{ρ} the boundary of F_{ρ} and further by $L(\rho)$ the length of $\Gamma_{\rm P}$ defined by the line-element ds.

We put $R_{\rho} = F_{\rho} - \overline{F}_{1}(\rho > 1)$. Denote by $\log \mu_{\rho}$ the modul of the domain R_{ρ} and by u the harmonic function in R_{ρ} such that

$$u = \begin{cases} 0 & \text{on } \Gamma_o, \\ \log \mu_{\rm P} & \text{on } \Gamma_{\rm P}. \end{cases}$$

If v represents the conjugate harmonic function of u, then we have

$$2\pi = \int_{\Gamma_{
ho}} dv = \int_{\Gamma_{
ho}} \frac{du}{d\nu} ds$$
 ,

where the integral is taken in the positive sense of Γ_{ρ} with respect to the domain R_{ρ} .

Let $D(\rho)$ be the Dirichlet integral of u with respect to R_{ρ} . Then it is immediate that

$$D(\rho) = \iint_{R_{\rho}} \left[\left(\frac{du}{dx} \right)^2 + \left(\frac{du}{dy} \right)^2 \right] dx dy = \int_{\Gamma_{\rho}} u dv = 2\pi \log \mu_{\rho}$$

Therefore, using $\int_{\Gamma_{\rho}} ds = L(\rho)$ and the Schwarz inequality, wet get

$$4\pi^2 \leq \int_{\Gamma_{
ho}} ds \int_{\Gamma_{
ho}} \left(rac{du}{d
u}
ight)^2 ds \leq L(
ho) rac{dD(
ho)}{d
ho} \, ds$$

whence

$$4\pi^2 \frac{d\rho}{L(\rho)} \leq dD(\rho) \, .$$

Integrating the both sides from ρ_o to ρ , we obtain

0

$$4\pi^2 \int_{\rho_o}^{t} \frac{d\rho}{L(\rho)} \leq D(\rho) - D(\rho_o) = 2\pi \log \frac{\mu_{\nu}}{\mu_{\rho_o}}.$$

Thus, from Theorem 2, we have the following:

Theorem 3. (Laasonen [3]). If the integral $\int_{-\frac{1}{L(\rho)}}^{\infty} \frac{d\rho}{L(\rho)}$ diverges, the

ideal boundary of the Riemann surface is of harmonic measure zero.

4. Let us consider the case that the Riemann surface F is simply connected. In this case, F is mapped conformally on the finite or infinite circle in the complex z-plane. Hence we can suppose that F_{ρ} is the image of the circle $|z| < \rho$ on F as in § 3. If we put $R_{\rho} = F_{\rho} - \overline{F_1}$ ($\rho > 1$), then the modul log μ_{ρ} of R_{ρ} equals to log ρ . Moreover, we can take

No. 2.]

T. KURODA.

$$ds = |z'(w)| |dw| = |dz|$$

as the conformal metric on F, where z(w) is the mapping function of F into the z-plane. Since we get

$$L(\rho)=2\pi\rho,$$

we have

(*)

$$\int rac{d
ho}{L(
ho)} = rac{1}{2\pi}\log
ho = rac{1}{2\pi}\log\mu_{
ho} \,.$$

Thus the following theorem is obtained:

0

Theorem 4. (Ahlfors [1]). In order that the simply connected open Riemann surface is of the parabolic type, it is necessary and sufficient that there exists a metric ds on F such that the integral

$$\int \frac{d\rho}{L(\rho)}$$

diverges.

Proof. Sufficiency of this condition is obtained without difficulty from Theorem 3. Necessity is obvious from (*).

References.

1) L. Ahlfors: Sur le type d'une surface de Riemann, Compt. Rendus. 201 (1935).

2) P. Laasonen: Zum Typenproblem der Riemannschen Flächen, Ann. Acad. Sci. Fenn. A. I. 11 (1942).

3) R. Nevanlinna: Quadratisch integriebare Differentiale auf einer Riemannschen Mannigfaltigkeit, Ann. Aead. Sci. Fenn. A. I. 1 (1941).

4) A. Pfluger: Über das Anwachen eindeutiger analytischen Funktionen auf offene Riemannsche Fläche, Ann. Acad. Sci. Fenn. A. I. **64** (1949).

60