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27. Theorems on the Convexity o[ Bounded Functions.

By Yasuharu SASAKL
Faculty of Engineering, Fukui College.

(Comm. by K. KrJNUGr, M.J.A., March 12, 1951.)

1. Introduction.

We denote by R the family of functions {F()} which are
regular in zll and have the properties

IF(z) M (M:> 1), F(0) 0, F(0) 1,

aad by S the family of functions {F(z)} which belong to R and
schlicht in zll.

Dieudoane) has proved that aay function F(z)of the class
R is schlicht in [zIM--/M"-- 1 and this circle is tran8formed
into a starshaped regioa in w-plane by w F(z) aad the number
M-/M-1 cannot be replaced by any greater one, aad R. Nevan-
liana) has proved that, for any fuaction F(z) which is regular,
schlicht ia z]l and has the properties F(o)= O, F(o)= 1, the
"Rundungsschranke" is 2-

Ia this paper, we will find the greatest circle ia which aay
function F(z) of the class R is coavex, and the "Runduags-
schraake" of the class S. For this purpose we will show some
lemmas in 2 aad will treat the problems cited above ia 3 and 4.

2. Lemmas.
Let F(z) be any function of the class R, then
Lemma 1

Mlzl!--Mlz! :lF(z)l <Mlzl l+Mlzl
M--Izl M/lzl

Lemma 2 (Simoaart)

(M+ IF(z)l)(I F(z)l--M!zi9 IF(z)[<(M--IF(z)1) (I F(z) l+ MI zl),
MI z 1(--izl) MI z !(1--Izl)

Lemma 3’
Let F(z)= _cz be regular and IF(z) IM in zil, then

M-c’---- levi.M
For the function F(z) which belongs to the etass S, the function
of.
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( s + Z )-- F(z)
F(-s+z)M--F(z)

1-5s

is regular and schlicht in, sll and has the properties

4()1 M, oh(o) O, $(z) --F(z),

and we have

Therefore

’(o) M: (1 --lz ) F’(z)
M_lF(z)l

,t,’(z) Mo--IF(z)I

Differentiating ’() and putting O, we get

4,"(o) M(1--1zl)F(z)[ F’(z) 2F(z)F’(z) 12

I+
M-i-lz F(z)! J"

As

M:() ]] 1(’)
4,(o) [M_ s(.)]:,

is regular and schlicht in l’l< 1 and

(o) 0, (z) MF(z)
qd(o)[M+ sF(z)]:

@’() M M+ s() ’()
[M-s()] ’(o)

we have

+’(o) 1, M-eF(z)’(z) M
[M+ sF(z)]! ’(o)

Hence we have

Z’q’(z): z M- eF(z) M- F(z)i
(z) M+ sF(z) M’(1-- z

As @(0 (@(o)= 0, @’(o)--1) is regular and schlicht in ii<l, we
have



and

s,//(C) < 1+i1 !1-..1

(1+l l) (]---I !Y"

Putting z in these two inequalities and taking e IF(z)l
F(z)

or ----- IF(z)l as (I !--1) is arbitrary, we can obtain the
F(z)

lowing lemmas.
Lemma 4

( ( 7)l+lr(z)l) (1 zl)" lr()i
1--! )1

)’
izl<:Z,

M +! (1-11

Lemma 5

M+lF(z)l. 1-1z] :
i-lF(z)i +izl-

M--IF(z)I. l+lzl Izl <1.M+i F(z) 1--1zl

From Lemma 4 and 5 we have the "Yerzerungssgtze ", i.e.
Lemma 6

M, l + z I- V(l + z l)-4M-’l z
1 +1 zl + V(1 +1 z I)-4M-’I zl 1

F(z)

]/’(1--I z I) + 4M-’i z (1-t z I)
M-(1-1zl)"+4M-’izl +(1-I z 1)’ Izl<l.

Lemma 7

[1 + M-’I F(z) Y.
1-M-’I F(z)

-Izl .iF’(z)l
(l+lzlY

[1-M-’iF(z)I]
1 + M-’I F(z)l

l+lzi Izi<l.(1-1zl).’

3. Convexity of the functions of R.
Let F(z) be any function of the class R, then () defined in

2 is regular in[C l<:: 1 and

l(C) <M, (o) 0.

Therefore 4() can be expanded in power series,

(C) c,C+..+ C <: 1,
where

c, = ’(o) M"(1--1 z i’)P(z)
M"- F(z) i"
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"(o) M:(I--I zp):P(z) [F,’(z) 25
2 2(M:’i F(z)i:) [F(z) 1--1 zl:

+ 2F(z)F’(z)
M:--! F(z)l

Hence, by lemma 3, we have

M_.M. (1-1 z I:)’l P(z)i: >__ M:(1--1 z I:)"-lF’(z)l
(M:-) F(z)l :): 2(M--I F(z)l)

2F(zF’(z)F’(z) 25 +
P(z) 1--[ z I’-" M- F(z)i

whence we have, for z < p, M-]/M:-I

1 + R[z F"(z) ] 21 zl: + 21zFr(z)l 21zl(M--I F(z)19
1--1 z

for by the theorem due to Dieudonn6 given in 1, F(z) is schlicht
in lzl .p and then P(z)==O there.

The right side in this inequality is not less than

1+ 21zi’ !+2 F(z)l Mt z -21zl: M--IF(z)I
1-1 z M(1--1 z !9 (1-1 z I)(I F(z)t- Mi z )

by lemma 2, and this is not less than

1 + 2r(1--Mr) 2r(M--2r+Mr)
(1-r’)(M-r) (1--r:) (1--2Mr+ r:)

M-(4M:--l) r + 3Mr:--r
(M-r)(1-2Mr+ r)

by lemma 1, where rl z]<p M--CM--I. Therefore, we have,
for

[ _P’(z) l> M-(aM-l)r+3Mr-r’1 +R z
F’ (z) _! (M--r)(1--2Mr+ r1

The equation

f(r) =--- M-(4M-1)r+SMr-r = 0

has only one such real root p that o < p. p, < 1, where equality
sign holds only when M---1, and f(r) is decreasing function of r
for orl. So that

f(r) >0 for o

_
r <: p.

Thus we have, for o = r <p.,

1 + R[z F"(z)
F’(z) ] >o.
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That is to say, the circle zl P is transformed into a convex
region by w---F(z). And we have, for the function

F(z) Mz 1--Mz (.}
M--z

which belongs to R,

and

l+Z F"(z) M--(4M-1)z+ 3Mz-z
F (z) (M-- z)(1 2Mz+ z)

1 + R[ F"(p)
P F’(p) ] O.

Therefore zl P. is the greatest circle for convexity of any func-
tion of the class R. If we denote by d the distance from the
origin to a boundary poia,t of the mapped region of lzl p by
w--F(z), then, by lemma 1,

Mp. 1--Mp, d . Mp 1 +Mp,,
M--p,, M+p,,

and eqality sign holds for the function

F(z) Mz.1 Mz
M-.z

of the class R. Hence we have the following
Theorem 1.
Let F(z) be any regular function in lzl 1 such

E(z)i <M, F(o) O, F(o) 1,

then the circle zl p. is mapped to a convex region in w-plane by
w---F(z), where p is the positive root of the equation

M-(4M-1)x+ 3MxO--x O,

which is not greater than 1, and this value cannot be replaced by any
greater one.

Further the distance d from the origin to a boundary point of
the mapped region, satiies the relation

Mp 1-Mp d Mp 1 +Mp
M--p M+p

and te equality is attained by the function (*).
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4. The "Rundungsschranke" of S,.

Let F(z) be any function of the class S, then we have already
shown that, the regular function (0, satisfies

!()i . M, (o) 0, (z) --F(z),
and @(z) is schlicht in I1 1 and @(o)--0, @(o)= 1.
We get, by simple calculations,

q"(0)=-(-] z ]-0)[ ,’,’.(z)
F’(z)

25
/ 2F(z)F(z). + 4eMF(z). ].z M- F(z)! M- F(z)l

Being i@"(o)i _4, we have,

F"(z) 21zl
F’(z) -I z

Putting
zF’(z)

we have

4eMzF(z) 41 z2zF(z F’(z) + -M--I F(z)l M-- F(z) 1--I z

and taking the real part of the left side,

[z F"(z) ] 21z I:--4| z + 2MlzF{z)l 21zF(z)l.RL -F’(z) _[
>-

1 z| M F(z)i
+- M+t

Applying lemma 4, 5 and 6, we have

1 + R[z F"(z) ]
F’(z)

where

As the equation

1 --[M(1--r):V’--2(M--1)r(1 +r)].
M(1--r)/D

r [z !, and D (1 +r)--4M-r.

M(1-r)’/-2(M-1)r(1 + r) 0

can be reduced to

(t.--2 1+ t--4 2---6-6 +--F. t----
M M

I--0, t=r+---.

When we denote the left side by f(t), then we know, that f(t)
has one real root to lying in (2, 4), and

f(t)<O for 2_t<to, f(t)>O for t>to.
Putting r+---1 to then

r

1r --(to-- V/to--4) po (2-- V3 < po 1)

and
r<po for t>to, r>po for t<to, r=po for t=to.
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Hence we conclude that f(r) 0 for r po, i.e.

M(1-r):/--.2(M- 1)r(1 + r)/ O,

and therefore, for

I+R[zF"(z)q
L ’F(2)_i > O.

So that the circle [zlpo is transformed into a convex region
by w F(z). On the other hand, for the function defined by

F(z) Mz+ 1-- ,/(z + 1): 4M-’z
z + 1 + V(z + 1):-

of the class S,,

zF"(z) 11+ --( M(I_z)V,M(1 z)%/ D--2(M--1)z(1

4where D l + z)" --_-z and therefore

1 + R[ F’
J o.

Hence po is the greatest number for convexity.
have the

Consequently we

Theorem 2.

Denoting by s the class of functions {F(z)} such as F(z) is
regular and schlicht, having the properties

F(z) M(M--_ I) F(o) O F(o) l

then numr po is the "Rundungsschranke " of S,,, where

1 tpo V 4)

and to is a root which is not less than 2 of the euation

In conclusion I wish to express my sincere thanks to Prof. Akira
Kobori of the Kyoto University for his kind guidance throughout
this work,
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