27. Theorems on the Convexity of Bounded Functions.

By Yasuharu Sasaki.
Faculty of Engineering, Fukui College. (Comm. by K. Kunugi, m.J.A., March 12, 1951.)

§ 1. Introduction.

We denote by R_{M} the family of functions $\left\{F_{(z)}\right\}$ which are regular in $|z|<1$ and have the properties

$$
|F(z)| \leqq M(M \geqq 1), F(0)=0, F^{\prime}(0)=1
$$

and by S_{M} the family of functions $\{F(z)\}$ which belong to R_{M} and schlicht in $|z|<1$.

Dieudonne ${ }^{1}$ has proved that any function $F(z)$ of the class R_{M} is schlicht in $|z|<M-\sqrt{M^{2}-1}$ and this circle is transformed into a starshaped region in w-plane by $w=F(z)$ and the number $M-v \cdot \overline{M^{2}-1}$ cannot be replaced by any greater one, and R. Nevanlinna ${ }^{2}$ has proved that, for any function $F(z)$ which is regular, schlicht in $|z|<1$ and has the properties $F(o)=0, F^{\prime}(o)=1$, the "Rundungsschranke" is $2-\sqrt{3}$.

In this paper, we will find the greatest circle in which any function $F(z)$ of the class R_{M} is convex, and the "Rundungsschranke" of the class S_{m}. For this purpose we will show some lemmas in $\S 2$ and will treat the problems cited above in $\S 3$ and 4.

§ 2. Lemmas.

Let $F(z)$ be any function of the class R_{M}, then
Lemma 1

$$
M|z| \frac{1-M|z|}{M-|z|} \leqq|F(z)| \leqq M|z| \frac{1+M|z|}{M+|z|}, \quad|z|<1
$$

Lemma 2 (Simonart) ${ }^{\text {) }}$
$\frac{(M+|F(z)|)\left(|F(z)|-M|z|^{2}\right)}{M|z|\left(1-|z|^{2}\right)} \leqq\left|F^{\prime}(z)\right| \leqq \frac{\left(M-\left|F^{\prime}(z)\right|\right)\left(|F(z)|+M|z|^{2}\right)}{M|z|\left(1-|z|^{2}\right)},|z|<1$.
Lemma 3^{4})
Let $F(z)=\sum_{\nu=1}^{\infty} c_{\nu} z^{\nu}$ be regular and $|F(z)|<M$ in $|z|<1$, then

$$
M-\frac{\left|c_{1}\right|^{2}}{M} \geqq\left|c_{2}\right|
$$

For the function $F^{\prime}(z)$ which belongs to the class S_{M}, the function of ζ.

$$
\phi(\zeta)=M^{2} \frac{F\left(\frac{-s+z}{1-\bar{z} s}\right)-F(z)}{M^{2}-\overline{F(z)} F\left(\frac{-s+z}{1-\bar{z} s}\right)}, \quad|z|<1
$$

is regular and schlicht in $|s|<1$ and has the properties

$$
|\phi(\zeta)|<M, \quad \phi(o)=0, \quad \phi(z)=-F(z)
$$

and we have

$$
\phi^{\prime}(\zeta)=-M^{2} \frac{M^{2}-|F(z)|^{2}}{\left[M^{2}-\overline{F^{\prime}(z)} F\left(\frac{-\zeta+z}{1-\bar{z} \zeta}\right)\right]^{2}} F^{{ }^{\prime}}\left(\frac{-\zeta+z}{1-\bar{z} \zeta}\right) \cdot \frac{1-|z|^{2}}{(1-\bar{z} \zeta)^{2}} .
$$

Therefore

$$
\phi^{\prime}(o)=-M^{2} \frac{\left(1-|z|^{2}\right) F^{\prime}(z)}{M^{2}-|F(z)|^{2}}, \quad \phi^{\prime}(z)=-\frac{M^{2}-|F(z)|^{2}}{M^{2}\left(1-|z|^{2}\right)} .
$$

Differentiating $\phi^{\prime}(\zeta)$ and putting $\zeta=O$, we get

$$
\phi^{\prime \prime}(o)=\frac{M^{2}\left(1-|z|^{2}\right) F^{\prime}(z)}{M^{2}-|F(z)|^{2}}\left[\frac{F^{\prime \prime}(z)}{F^{\prime}(z)}-\frac{2 \bar{z}}{1-|z|^{2}}+\frac{2 \overline{F(z)} F^{\prime}(z)}{M^{2}-\left|F^{\prime}(z)\right|^{2}}\right] .
$$

As

$$
\psi(\zeta)=\frac{M^{\circ} \phi(\zeta)}{\phi^{\prime}(o)[M-\varepsilon \phi(\zeta)]^{2}}, \quad|\varepsilon|=1
$$

is regular and schlicht in $|\zeta|<1$ and

$$
\begin{gathered}
\psi(0)=0, \quad \psi(z)=-\frac{M^{2} F(z)}{\phi^{\prime}(o)[M+\varepsilon F(z)]^{2}} \\
\psi^{\prime}(\zeta)=M^{2} \frac{M+\varepsilon \phi(\zeta)}{[M-\varepsilon \phi(\zeta)]^{3}} \frac{\phi^{\prime}(\zeta)}{\phi^{\prime}(o)}
\end{gathered}
$$

we have

$$
\psi^{\prime}(o)=1, \quad \psi^{\prime}(z)=M^{2} \frac{M-\varepsilon F(z)}{[M+\varepsilon F(z)]^{3}} \cdot \frac{\phi^{\prime}(z)}{\phi^{\prime}(o)} .
$$

Hence we have

$$
Z \frac{\psi^{\prime}(z)_{i}}{\psi(z)}=z \frac{M-\varepsilon F^{\prime}(z)}{M+\varepsilon F(z)} \cdot \frac{M^{2}-|F(z)|^{2}}{M^{2}\left(1-|z|^{2}\right) F(z)} .
$$

As $\psi(\boldsymbol{*})\left(\psi(0)=0, \psi^{\prime}(0)=1\right)$ is regular and schlicht in $|\zeta|<1$, we have

$$
\frac{1-|\zeta|}{1+|\zeta|} \leqq\left|s \frac{\psi^{\prime}(\zeta)}{\psi(\zeta)}\right| \leqq \frac{1+|\zeta|}{1-|\zeta|}, \quad|\zeta|<1
$$

and

$$
\frac{|\zeta|}{(1+|\zeta|)^{2}} \leq|\psi(\zeta)| \leq \frac{|\zeta|}{(1-\mid \zeta!)^{2}}, \quad \vdots \zeta \mid<1 .
$$

Putting $\zeta=z$ in these two inequalities and taking $\varepsilon=\frac{|F(z)|}{F(z)}$ or $\varepsilon=-\frac{|F(z)|}{F(z)}$, as $\varepsilon(|\varepsilon|=1)$ is arbitrary, we can obtain the following lemmas.

Lemma 4

$$
\left(1+\frac{|F(z)|}{M}\right)^{2} \frac{|z|}{(1+|z|)^{2}} \leqq|F(z)| \leqq\left(1-\frac{|F(z)|}{M}\right)^{2} \frac{|z|}{(1-|z|)^{2}},|z|<1,
$$

Lemma 5

$$
\frac{M+|F(z)|}{M-|F(z)|} \cdot \frac{1-|z|}{1+|z|} \leqq\left|z \frac{F(z)}{F(z)}\right| \leqq \frac{M-|F(z)|}{M+|F(z)|} \cdot \frac{1+|z|}{1-|z|},|z|<1 .
$$

From Lemma 4 and 5 we have the "Verzerungssätze", i.e.

Lemma 6

$$
\begin{aligned}
& M \frac{1+|z|-\sqrt{(1+|z|)^{3}-4 M^{-1}|z|}}{1+|z|+\sqrt{(1+|z|)^{2}-4 M^{-1}|z|}} \leqq|F(z)| \\
\leqq & M \frac{v^{\prime}(1-|z|)^{2}+4 M^{-1}|z|}{\sqrt{(1-|z|)^{2}+4 M^{-1}|z|}+(1-|z|)}, \quad|z|<1 .
\end{aligned}
$$

Lemma 7

$$
\frac{\left[1+M^{-1}|F(z)|\right]^{3}}{1-M^{-1}|F(z)|} \cdot \frac{1-|z|}{(1+|z|)^{3}} \leqq\left|F^{\prime}(z)\right| \leqq \frac{\left[1-M^{-1}|F(z)|\right]^{3}}{1+M^{-1}|F(z)|} \cdot \frac{1+|z|}{(1-|z|)^{3}},|z|<1 .
$$

§ 3. Convexity of the functions of R_{31}.
Let $F(z)$ be any function of the class R_{M}, then $\phi(\zeta)$ defined in $\S 2$ is regular in $|\zeta|<1$ and

$$
|\phi(\zeta)|<M, \quad \phi(0)=0 .
$$

Therefore $\phi(\zeta)$ can be expanded in power series,

$$
\phi(\zeta)=c_{1} \zeta+c_{2} \zeta^{2}+\ldots \cdots, \cdots \cdots,|\zeta|<1,
$$

where

$$
c_{1}=\phi^{\prime}(0)=\frac{M^{2}\left(1-|z|^{2}\right) F^{\prime}(z)}{M^{2}-|F(z)|^{2}}
$$

$$
c_{2}=\frac{\phi^{\prime \prime}(o)}{2}=\frac{M^{2}\left(1-|z|^{2}\right)^{2} F^{\prime}(z)}{2\left(M^{2}-|F(z)|^{2}\right)}\left[\frac{F^{\prime \prime}(z)}{F^{\prime}(z)}-\frac{2 \bar{z}}{1-|z|^{2}}+\frac{2 \overline{F(z)} F^{\prime}(z)}{M^{2}-|F(z)|^{2}}\right]
$$

Hence, by lemma 3, we have

$$
\begin{gathered}
M-M^{3} \frac{\left(1-|z|^{2}\right)^{2} \mid F^{\prime}(z)^{2}}{\left(M^{2}-|F(z)|^{2}\right)^{2}} \geqq \frac{M^{2}\left(1-|z|^{2}\right)^{2}\left|F^{\prime}(z)\right|}{2\left(M^{2}-|F(z)|^{2}\right)} \\
\times\left|\frac{F^{\prime \prime}(z)}{F^{\prime}(z)}-\frac{2 \bar{z}}{1-|z|^{2}}+\frac{2 \overline{F^{2}(z)} F^{\prime}(z)}{M^{2}-|F(z)|^{2}}\right|,
\end{gathered}
$$

whence we have, for $|z|<p_{s}=M-\sqrt{\bar{M}-1}$

$$
1+R\left[z \frac{F^{\prime \prime}(z)}{F^{\prime}(z)}\right] \geqq 1+\frac{2|z|^{2}}{1-|z|^{2}}+\frac{2\left|z F^{\prime}(z)\right|}{M+|F(z)|}-\frac{2|z|\left(M^{2}-|F(z)|^{2}\right)}{M\left(1-|z|^{2}\right)^{2}\left|F^{\prime}(z)\right|}
$$

for by the theorem due to Dieudonne given in $\S 1, F(z)$ is schlicht in $|z|<p_{s}$ and then $F^{\prime}(z) \neq 0$ there.

The right side in this inequality is not less than

$$
1+\frac{2|z|^{2}}{1-|z|^{2}}+2 \frac{|F(z)|-M|z|^{2}}{M\left(1-|z|^{2}\right)}-2|z|^{2} \frac{M-|F(z)|}{\left(1-|z|^{2}\right)\left(|F(z)|-M|z|^{2}\right)}
$$

by lemma 2, and this is not less than

$$
1+\frac{2 r(1-M r)}{\left(1-r^{2}\right)(M-r)}-\frac{2 r\left(M-2 r+M r^{2}\right)}{\left(1-r^{2}\right)\left(1-2 M r+r^{2}\right)}=\frac{M-\left(4 M^{2}-1\right) r+3 M r^{2}-r^{3}}{(M-r)\left(1-2 M r+r^{2}\right)}
$$

by lemma 1 , where $r|=z|<p_{s}=M-\sqrt{M^{2}-1}$. Therefore, we have, for $|z|=r<p_{s}$,

$$
1+R\left[z \frac{F^{\prime \prime}(z)}{F^{\prime}(z)}\right] \geqq \frac{M-\left(4 M^{2}-1\right) r+3 M r^{2}-r^{3}}{(M-r)\left(1-2 M r+r^{\prime}\right)}
$$

The equation

$$
f(r) \equiv M-\left(4 M^{2}-1\right) r+3 M r^{2}-r^{3}=0
$$

has only one such real root p_{c} that $a<p_{c} \leqq p_{s} \leqq 1$, where equality sign holds only when $M=1$, and $f(r)$ is decreasing function of r for $o \leqq r<1$. So that

$$
f(r)>0 \text { for } o \leqq r<p_{c} .
$$

Thus we have, for $o \leqq r<p_{0}$,

$$
1+R\left[z \frac{F^{\prime \prime}(z)}{F^{\prime \prime}(z)}\right]>0
$$

That is to say, the circle $|z|<p_{c}$ is transformed into a convex region by $w=F(z)$. And we have, for the function

$$
\begin{equation*}
F(z)=M z \frac{1-M z}{M-z} \tag{*}
\end{equation*}
$$

which belongs to R_{M},

$$
1+z \frac{F^{\prime \prime}(z)}{F^{\prime}(z)}=\frac{M-\left(4 M^{2}-1\right) z+3 M z^{2}-z^{3}}{(M-z)\left(1-2 M z+z^{2}\right)}
$$

and

$$
1+R\left[p_{c} \frac{F^{\prime \prime}\left(p_{c}\right)}{F^{\prime}\left(p_{c}\right)}\right]=0
$$

Therefore $|z|<p_{c}$ is the greatest circle for convexity of any function of the class R_{M}. If we denote by d the distance from the origin to a boundary point of the mapped region of $|z|<p_{c}$ by $w=F(z)$, then, by lemma 1 ,

$$
M p_{c} \frac{1-M p_{c}}{M-p_{c}} \leqq d \leqq M p_{c} \frac{1+M p_{c}}{M+p_{c}}
$$

and eqality sign holds for the function

$$
F(z)=M z \frac{1-M z}{M-z}
$$

of the class R_{M}. Hence we have the following
Theorem 1.
Let $F(z)$ be any regular function in $|z|<1$ such that

$$
|F(z)|<M, \quad F(o)=0, \quad F^{\prime}(o)=1,
$$

then the circle $|z|<p_{c}$ is mapped to a convex region in w-plane by $w=F(z)$, where p_{c} is the positive root of the equation

$$
M-\left(4 M^{2}-1\right) x+3 M x^{2}-x^{3}=0,
$$

which is not greater than 1, and this value cannot be replaced by any greater one.

Further the distance d from the origin to a boundary point of the mapped region, satisfies the relation

$$
M p_{c} \frac{1-M p_{c}}{M-p_{c}} \leqq d \leqq M p_{c} \frac{1+M p_{c}}{M+p_{c}},
$$

and the equality is attained by the function (*).

\S 4. The "Rundungsschranke" of S_{m}.

Let $F(z)$ be any function of the class S_{m}, then we have already shown that, the regular function $\phi(\zeta)$, satisfies

$$
|\phi(\zeta)|<M, \quad \phi(o)=0, \quad \phi(z)=-F(z)
$$

and $\psi(z)$ is schlicht in $|\zeta|<1$ and $\psi(0)=0, \psi^{\prime}(0)=1$.
We get, by simple calculations,
$\psi^{\prime \prime}(0)=-\left(1-|z|^{2}\right)\left[\frac{F^{\prime \prime}(z)}{F^{\prime}(z)}-\frac{2 \bar{z}}{1-|z|^{2}}+\frac{2 \overline{F(z)} F^{\prime \prime}(z)}{M^{2}-|F(z)|^{2}}+\frac{4 \varepsilon M F^{\prime}(z)}{M^{2}-|F(z)|^{2}}\right]$.
Being $\left|\psi^{\prime \prime}(o)\right| \leqq 4$, we have,

$$
\left|z \frac{F^{\prime \prime}(z)}{F^{\prime}(z)}-\frac{2|z|^{2}}{1-|z|^{2}}+\frac{2 z \overline{F(z)} F^{\prime}(z)}{M^{2}-|F(z)|^{2}}+\frac{4 \varepsilon M z F^{\prime}(z)}{M^{2}-|F(z)|^{2}}\right| \leqq \frac{4|z|}{1-|z|^{2}} .
$$

Putting $\varepsilon=-\frac{\left|z F^{\prime}(z)\right|}{z F^{\prime}(z)}$ and taking the real part of the left side, we have

$$
R\left[z \frac{F^{\prime \prime}(z)}{F^{\prime \prime}(z)}\right] \geqq \frac{2|z|^{2}-4|z|}{1-|z|^{2}}+\frac{2 M\left|z F^{\prime}(z)\right|}{M^{2}-|F(z)|^{2}}+\frac{2\left|z F^{\prime}(z)\right|}{M+|F(z)|} .
$$

Applying lemma 4, 5 and 6, we have

$$
1+R\left[z \frac{F^{\prime \prime}(z)}{F^{\prime}(z)}\right] \geqq \frac{1}{M(1-r) \mathfrak{l}^{\prime} \bar{D}}\left[M(1-r)^{2} \sqrt{D}-2(M-1) r(1+r)\right]
$$

where

$$
r=|z|, \text { and } D=(1+r)^{2}-4 M^{-1} r .
$$

As the equation

$$
M(1-r)^{2} \sqrt{D}-2(M-1) r(1+r)=0
$$

can be reduced to

$$
t^{3}-2\left(1+\frac{2}{M}\right) t^{2}-4\left(2-\frac{6}{M}+\frac{1}{M^{2}}\right) t-\frac{8}{M^{2}}=0, \quad t=r+\frac{1}{r} .
$$

When we denote the left side by $f(t)$, then we know, that $f(t)$ has one real root t_{0} lying in $(2,4)$, and

$$
f(t)<0 \text { for } 2 \leqq t<t_{0}, \quad f(t)>0 \text { for } t>t_{0} .
$$

Putting $r+\frac{1}{r}=t_{0}$ then

$$
r=\frac{1}{2}\left(t_{0}-\sqrt{t_{0}^{2}-4}\right) \equiv p_{0} \quad\left(2-\sqrt{3}<p_{0}<1\right)
$$

and

$$
r<p_{0} \text { for } t>t_{0}, \quad r>p_{0} \text { for } t<t_{0}, \quad r=p_{0} \text { for } t=t_{0} .
$$

Hence we conclude that $f(r)>0$ for $r<p_{0}$, i. e.

$$
M(1-r)^{2} \sqrt{D}-2(M-1) r(1+r)>0,
$$

and therefore, for $r<p_{0}$,

$$
1+R\left[z \frac{F^{\prime \prime \prime}(z)}{F^{\prime}(\dot{z})}\right]>0 .
$$

So that the circle $|z|<p_{0}$ is transformed into a convex region by $w=F(z)$. On the other hand, for the function defined by

$$
F^{\prime}(z)=M \frac{z+1-\sqrt{(z+1)^{2}-4 M^{-1} z}}{z+1+\sqrt{(z+1)^{2}-4 M^{-1} z}}
$$

of the class $S_{s k}$,

$$
1+z \frac{F^{\prime \prime}(z)}{F^{\prime}(z)}=\frac{1}{M(1-z) \sqrt{D}}\left[M(1-z)^{\circ} \sqrt{D}-2(M-1) z(1+z)\right]
$$

where $D=(1+z)^{2}-\frac{4}{M} z$, and therefore

$$
1+R\left[p_{0} \frac{F^{\prime \prime}\left(p_{0}\right)}{F^{\prime}\left(p_{0}\right)}\right]=0 .
$$

Hence p_{0} is the greatest number for convexity. Consequently we have the

Theorem 2.
Denoting by s_{s} the class of functions $\{F(z)\}$ such as $F(z)$ is regular and schlicht, having the properties

$$
|F(z)|<M(M \geqq 1), \quad F(o)=0, \quad F^{\prime}(o)=1,
$$

then number p_{0} is the "Rundungsschranke" of S_{u}, where

$$
p_{0}=\frac{1}{2}\left(t_{0}-\sqrt{t_{0}^{3}-4}\right),
$$

and t_{0} is a root which is not less than 2 of the equation

$$
t^{3}-2\left(1+\frac{2}{M}\right) t^{2}-4\left(2-\frac{6}{M}+\frac{1}{M^{2}}\right) t-\frac{8}{M^{2}}=0 .
$$

In conclusion I wish to express my sincere thanks to Prof. Akira Kobori of the Kyoto University for his kind guidance throughout this work.

References.

1) J. Dieudonné: Sur les cercles de multivalence des fonctions bornées. C.R. Acad Sci. Paris 190 (1930).
: Recherches sur quelques problémes relatifs aux polynomes et aux fonctions bornées d'une variable complexe. Thése de Paris; Ann. Sci. Ecole Norm. Sup. 48 (1931).
2) R. Nevanlinna: Uber die schlichten Abbildungen des Einheitskreises. Oversikt av Finska Vetenskaps-Soc. Förh. (A) 62. 1919-1920.
3) F. Simonart: Sur les tránsformations ponctuelles et leurs applications geometriques; la représentation conforme. Ann. de la Soc. sci. de Bruxelles 51 (1931).
4) S. Izumi : Tôhoku Math. Journ. 32 (1930). or see Bieberbach, "Lehrbuch der Funktionentheorie". Bd II. S. 139-140.
