27. Theorems on the Convexity of Bounded Functions.

By Yasuharu SASAKI. Faculty of Engineering, Fukui College.

(Comm. by K. KUNUGI, M.J.A., March 12, 1951.)

§1. Introduction.

We denote by R_M the family of functions $\{F_{(z)}\}$ which are regular in |z| < 1 and have the properties

$$|F(z)| \leq M \ (M \geq 1), \ F(0) = 0, \ F'(0) = 1,$$

and by S_M the family of functions $\{F(z)\}$ which belong to R_M and schlicht in |z| < 1.

Dieudonne¹) has proved that any function F(z) of the class R_M is schlicht in $|z| < M - \sqrt{M^2 - 1}$ and this circle is transformed into a starshaped region in w-plane by w = F(z) and the number $M - \sqrt{M^2 - 1}$ cannot be replaced by any greater one, and R. Nevanlinna²) has proved that, for any function F(z) which is regular, schlicht in |z| < 1 and has the properties F(o) = 0, F'(o) = 1, the "Rundungsschranke" is $2 - \sqrt{3}$.

In this paper, we will find the greatest circle in which any function F(z) of the class R_M is convex, and the "Rundungs-schranke" of the class S_M . For this purpose we will show some lemmas in §2 and will treat the problems cited above in §3 and 4.

§2. Lemmas.

Let F(z) be any function of the class R_M , then Lemma 1

$$M|z|\frac{1-M|z|}{M-|z|} \leq |F(z)| \leq M|z|\frac{1+M|z|}{M+|z|}, \qquad |z| < 1.$$

Lemma 2 (Simonart)³⁾

$$\frac{(M+|F(z)|)\,(|F(z)|-M|z|^2)}{M|z|(1-|z|^2)} \leq |F'(z)| \leq \frac{(M-|F(z)|)\,(|F(z)|+M|z|^2)}{M|z|(1-|z|^2)}, |z| < 1.$$

Lemma 34)

Let $F(z) = \sum_{\nu=1}^{\infty} c_{\nu} z^{\nu}$ be regular and |F(z)| < M in |z| < 1, then $M - \frac{|c_1|^2}{M} \ge |c_2|.$

For the function F(z) which belongs to the class S_M , the function of ζ .

No. 3.]

Theorems on the Convexity of Bounded Function.

$$\phi(\zeta)=M^2rac{Figg(rac{-s+z}{1-ar{z}s}igg)-F(z)}{M^2-ar{F(z)}Figg(rac{-s+z}{1-ar{z}s}igg)}, \qquad |\,z\,|\,{<}\,1.$$

is regular and schlicht in |s| < 1 and has the properties

$$|\phi(\zeta)| < M, \quad \phi(o) = 0, \quad \phi(z) = -F(z),$$

and we have

$$\phi'(\zeta)=-M^{2}rac{M^{2}-|F(z)|^{2}}{\left[M^{2}-\overline{F(z)}F\left(rac{-\zeta+z}{1-\overline{z}\zeta}
ight)
ight]^{2}}F'\left(rac{-\zeta+z}{1-\overline{z}\zeta}
ight)\cdotrac{1-|z|^{2}}{(1-\overline{z}\zeta)^{2}}.$$

Therefore

$$\phi'(o) = -M^{\frac{2}{2}} \frac{(1-|z|^2)F'(z)}{M^2-|F(z)|^2}, \ \phi'(z) = -\frac{M^2-|F(z)|^2}{M^2(1-|z|^2)}.$$

Differentiating $\phi'(\zeta)$ and putting $\zeta = 0$, we get

$$\phi''(o) = \frac{M^2(1-|z|^2)F'(z)}{M^2-|F(z)|^2} \Big[\frac{F''(z)}{F'(z)} - \frac{2\bar{z}}{1-|z|^2} + \frac{2\overline{F(z)}F'(z)}{M^2-|F(z)|^2} \Big].$$

 \mathbf{As}

$$\psi(\zeta) = rac{M^{2}\phi(\zeta)}{\phi'(o)\left[M - arepsilon \phi(\zeta)
ight]^{2}}, \qquad |arepsilon| = 1,$$

is regular and schlicht in $|\zeta|\!<\!1$ and

$$egin{aligned} \psi(o) &= 0, \quad \psi(z) &= -rac{M^2F(z)}{arphi'(o)[M+arepsilon F(z)]^2}, \ \ \psi'(\zeta) &= M^2rac{M+arepsilon\phi(\zeta)}{[M-arepsilon\phi(\zeta)]^3} \; rac{\phi'(\zeta)}{\phi'(o)}, \end{aligned}$$

we have

$$\psi'(o) = 1, \quad \psi'(z) = M^{2} \frac{M - \varepsilon F(z)}{[M + \varepsilon F(z)]^{3}} \cdot \frac{\phi'(z)}{\phi'(o)}.$$

Hence we have

$$Z\frac{\psi'(z)}{\psi(z)} = z \frac{M - \varepsilon F(z)}{M + \varepsilon F(z)} \cdot \frac{M^2 - |F(z)|^2}{M^2(1 - |z|^2)F(z)}.$$

As $\psi(\zeta)$ ($\psi(o) = 0$, $\psi'(o) = 1$) is regular and schlicht in $|\zeta| < 1$, we have

Y. SASAKI.

[Vol. 27,

 $\frac{1-|\zeta|}{1+|\zeta|} \leq \left|s\frac{\psi'(\zeta)}{\psi(\zeta)}\right| \leq \frac{1+|\zeta|}{1-|\zeta|}, \quad |\zeta| < 1$

and

$$\frac{|\zeta|}{(1+|\zeta|)^2} \leq |\psi(\zeta)| \leq \frac{|\zeta|}{(1-|\zeta|)^2}, \quad |\zeta| < 1.$$

Putting $\zeta = z$ in these two inequalities and taking $\varepsilon = \frac{|F(z)|}{F(z)}$ or $\varepsilon = -\frac{|F(z)|}{F(z)}$, as $\varepsilon(|\varepsilon| = 1)$ is arbitrary, we can obtain the fol-

lowing lemmas.

Lemma 4

$$\left(1 + \frac{|F(z)|}{M}\right)^2 \frac{|z|}{(1+|z|)^2} \leq |F(z)| \leq \left(1 - \frac{|F(z)|}{M}\right)^2 \frac{|z|}{(1-|z|)^2}, |z| < 1,$$

Lemma 5

$$\frac{M+|F(z)|}{M-|F(z)|} \cdot \frac{1-|z|}{1+|z|} \leq \left| z \frac{F(z)}{F(z)} \right| \leq \frac{M-|F(z)|}{M+|F(z)|} \cdot \frac{1+|z|}{1-|z|}, \ |z| < 1.$$

From Lemma 4 and 5 we have the "Verzerungssätze", i.e. Lemma 6

$$M \frac{1+|z|-\sqrt{(1+|z|)^2-4M^{-1}|z|}}{1+|z|+\sqrt{(1+|z|)^2-4M^{-1}|z|}} \leq |F(z)|$$

$$\leq M \frac{\sqrt{(1-|z|)^2+4M^{-1}|z|}-(1-|z|)}{\sqrt{(1-|z|)^2+4M^{-1}|z|}+(1-|z|)}, \qquad |z| < 1.$$

Lemma 7

$$\frac{[1+M^{-1}|F(z)|]^3}{1-M^{-1}|F(z)|} \cdot \frac{1-|z|}{(1+|z|)^3} \leq |F'(z)| \leq \frac{[1-M^{-1}|F(z)|]^3}{1+M^{-1}|F(z)|} \cdot \frac{1+|z|}{(1-|z|)^3}, \ |z| < 1.$$

§3. Convexity of the functions of R_{M} .

Let F(z) be any function of the class R_M , then $\phi(\zeta)$ defined in $\S2$ is regular in $|\zeta| < 1$ and

$$|\phi(\zeta)| < M, \quad \phi(o) = 0.$$

Therefore $\phi(\zeta)$ can be expanded in power series,

$$\phi(\zeta) = c_1 \zeta + c_2 \zeta^2 + \ldots + \ldots + |\zeta| < 1,$$

where

$$c_1 = \phi'(o) = \frac{M^2(1-|z|^2)F'(z)}{M^2-|F(z)|^2}$$

124

Theorems on the Convexity of Bounded Function.

$$c_{2} = \frac{\phi''(o)}{2} = \frac{M^{2}(1-|z|^{2})^{2}F'(z)}{2(M^{2}-|F(z)|^{2})} \left[\frac{F''(z)}{F'(z)} - \frac{2\overline{z}}{1-|z|^{2}} + \frac{2\overline{F(z)}F'(z)}{M^{2}-|F(z)|^{2}}\right].$$

Hence, by lemma 3, we have

No. 3.]

$$M - M^{3} \frac{(1 - |z|^{2})^{2} |F'(z)|^{2}}{(M^{2} - |F(z)|^{2})^{2}} \geq \frac{M^{2}(1 - |z|^{2})^{2} |F'(z)|}{2(M^{2} - |F(z)|^{2})}$$

$$imes \left| rac{F''(z)}{F'(z)} - rac{2\overline{z}}{1-|z|^2} + rac{2\overline{F'(z)}F'(z)}{M^2 - |F(z)|^2}
ight|,$$

whence we have, for $|z| < p_s = M - \sqrt{M^2 - 1}$

$$1 + R \left[z \frac{F''(z)}{F'(z)} \right] \ge 1 + \frac{2|z|^2}{1 - |z|^2} + \frac{2|zF'(z)|}{M + |F(z)|} - \frac{2|z|(M^2 - |F(z)|^2)}{M(1 - |z|^2)^2|F'(z)|} + \frac{2|z|^2}{M(1 - |z|^2)^2} + \frac{2|$$

for by the theorem due to Dieudonné given in §1, F(z) is schlicht in $|z| < p_s$ and then $F'(z) \neq 0$ there.

The right side in this inequality is not less than

$$1 + \frac{2|z|^{2}}{1-|z|^{2}} + 2\frac{|F(z)| - M|z|^{2}}{M(1-|z|^{2})} - 2|z|^{2}\frac{M-|F(z)|}{(1-|z|^{2})(|F(z)| - M|z|^{2})},$$

by lemma 2, and this is not less than

$$1 + \frac{2r(1 - Mr)}{(1 - r^2)(M - r)} - \frac{2r(M - 2r + Mr^2)}{(1 - r^2)(1 - 2Mr + r^2)} = \frac{M - (4M^2 - 1)r + 3Mr^2 - r^3}{(M - r)(1 - 2Mr + r^2)}$$

by lemma 1, where $r|=z| < p_s = M - \sqrt{M^2 - 1}$. Therefore, we have, for $|z| = r < p_s$,

$$1+R\left[z\frac{F''(z)}{F'(z)}\right] \geq \frac{M-(4M^{2}-1)r+3Mr^{2}-r^{3}}{(M-r)(1-2Mr+r^{2})}.$$

The equation

$$f(r) = M - (4M^2 - 1)r + 3Mr^2 - r^3 = 0$$

has only one such real root p_c that $o < p_c \leq p_s \leq 1$, where equality sign holds only when M = 1, and f(r) is decreasing function of r for $o \leq r < 1$. So that

$$f(r) > 0$$
 for $o \leq r < p_c$.

Thus we have, for $o \leq r < p_{\sigma}$,

$$1+R\left[z\frac{F^{\prime\prime}(z)}{F^{\prime}(z)}\right]>0.$$

That is to say, the circle $|z| < p_c$ is transformed into a convex region by w = F(z). And we have, for the function

$$F(z) = Mz \frac{1 - Mz}{M - z} \qquad (*)$$

which belongs to R_{M} ,

$$1 + z \frac{F''(z)}{F'(z)} = \frac{M - (4M^2 - 1)z + 3Mz^2 - z^3}{(M - z)(1 - 2Mz + z^3)}$$

and

$$1 + R \left[p_c \frac{F''(p_c)}{F'(p_c)} \right] = 0.$$

Therefore $|z| < p_c$ is the greatest circle for convexity of any function of the class R_M . If we denote by d the distance from the origin to a boundary point of the mapped region of $|z| < p_c$ by w = F(z), then, by lemma 1,

$$Mp_c \frac{1-Mp_c}{M-p_c} \leq d \leq Mp_c \frac{1+Mp_c}{M+p_c},$$

and equity sign holds for the function

$$F(z) = Mz \frac{1 - Mz}{M - z}$$

of the class R_{M} . Hence we have the following

Theorem 1.

Let F(z) be any regular function in |z| < 1 such that

|F(z)| < M, F(o) = 0, F'(o) = 1,

then the circle $|z| < p_c$ is mapped to a convex region in w-plane by w = F(z), where p_c is the positive root of the equation

$$M - (4M^2 - 1)x + 3Mx^2 - x^3 = 0$$
,

which is not greater than 1, and this value cannot be replaced by any greater one.

Further the distance d from the origin to a boundary point of the mapped region, satisfies the relation

$$Mp_c \frac{1-Mp_c}{M-p_c} \leq d \leq Mp_c \frac{1+Mp_c}{M+p_c}$$
,

and the equality is attained by the function (*).

No. 3.]

§ 4. The "Rundungsschranke" of S_M .

Let F(z) be any function of the class S_M , then we have already shown that, the regular function $\phi(\zeta)$, satisfies

$$|\phi(\zeta)| < M, \quad \phi(o) = 0, \quad \phi(z) = -F(z),$$

and $\psi(z)$ is schlicht in $|\zeta| < 1$ and $\psi(o) = 0$, $\psi'(o) = 1$. We get, by simple calculations,

$$\psi''(0) = -(1-|z|^2) \bigg[\frac{F''(z)}{F'(z)} - \frac{2\overline{z}}{1-|z|^2} + \frac{2\overline{F(z)}F'(z)}{M^2 - |F(z)|^2} + \frac{4\varepsilon MF'(z)}{M^2 - |F(z)|^2} \bigg].$$

Being $|\psi''(o)| \leq 4$, we have,

$$\Big| z \frac{F''(z)}{F'(z)} - \frac{2|z|^2}{1-|z|^2} + \frac{2z\overline{F(z)}}{M^2 - |F(z)|^2} + \frac{4\varepsilon MzF'(z)}{M^2 - |F(z)|^2} \Big| \leq \frac{4|z|}{1-|z|^2}.$$

Putting $\varepsilon = -\frac{|zF'(z)|}{zF'(z)}$ and taking the real part of the left side, we have

$$R\left[z\frac{F''(z)}{F'(z)}\right] \ge \frac{2|z|^2 - 4|z|}{1 - |z|^2} + \frac{2M|zF'(z)|}{M^2 - |F(z)|^2} + \frac{2|zF'(z)|}{M + |F(z)|}.$$

Applying lemma 4, 5 and 6, we have

$$1 + R \left[z \frac{F''(z)}{F'(z)} \right] \ge \frac{1}{M(1-r)\sqrt{D}} [M(1-r)^2 \sqrt{D} - 2(M-1)r(1+r)].$$

where

$$r = |z|$$
, and $D = (1+r)^2 - 4M^{-1}r$.

As the equation

$$M(1-r)^{2}\sqrt{D}-2(M-1)r(1+r)=0$$

can be reduced to

$$t^{3}-2\Big(1+rac{2}{M}\Big)t^{2}-4\Big(2-rac{6}{M}+rac{1}{M^{2}}\Big)t-rac{8}{M^{2}}=0, \quad t=r+rac{1}{r}.$$

When we denote the left side by f(t), then we know, that f(t) has one real root t_0 lying in (2, 4), and

$$f(t) \,{<}\, 0 \,\,\, {
m for} \,\,\, 2 \,{\leq}\, t \,{<}\, t_{\scriptscriptstyle 0} \,, \ \, f(t) \,{>}\, 0 \,\,\, {
m for} \,\,\, t \,{>}\, t_{\scriptscriptstyle 0} \,.$$

Putting $r + \frac{1}{r} = t_0$ then

$$r = \frac{1}{2}(t_0 - \sqrt{t_0^2 - 4}) \equiv p_0 \quad (2 - \sqrt{3} < p_0 < 1)$$

and

$$r < p_0 ext{ for } t > t_0, \ \ r > p_0 ext{ for } t < t_0, \ \ r = p_0 ext{ for } t = t_0.$$

Hence we conclude that f(r) > 0 for $r < p_0$, i.e.

$$M(1-r)^{2}\sqrt{D}-2(M-1)r(1+r) > 0,$$

and therefore, for $r {<} p_{\scriptscriptstyle 0}$,

$$1+R\left[z\frac{F^{\prime\prime}(z)}{F^{\prime}(z)}\right]>0.$$

So that the circle $|z| < p_0$ is transformed into a convex region by w = F(z). On the other hand, for the function defined by

$$F(z) = M \frac{z+1-\sqrt{(z+1)^2-4M^{-1}z}}{z+1+\sqrt{(z+1)^2-4M^{-1}z}}$$

of the class S_M ,

$$1 + z \frac{F''(z)}{F'(z)} = \frac{1}{M(1-z)\sqrt{D}} \Big[M(1-z)^2 \sqrt{D} - 2(M-1)z(1+z) \Big]$$

where $D = (1+z)^2 - \frac{4}{M}z$, and therefore

$$1 + R igg[p_0 rac{F''(p_0)}{F'(p_0)} igg] = 0 \; .$$

Hence p_0 is the greatest number for convexity. Consequently we have the

Theorem 2.

Denoting by s_M the class of functions $\{F(z)\}$ such as F(z) is regular and schlicht, having the properties

$$|F(z)| < M(M \ge 1), F(o) = 0, F'(o) = 1,$$

then number p_0 is the "Rundungsschranke" of S_M , where

$$p_0 = rac{1}{2}(t_0 - \sqrt{t_0^2 - 4})$$
 ,

and t_0 is a root which is not less than 2 of the equation

$$t^3 - 2\left(1 + \frac{2}{M}\right)t^2 - 4\left(2 - \frac{6}{M} + \frac{1}{M^2}\right)t - \frac{8}{M^2} = 0$$

In conclusion I wish to express my sincere thanks to Prof. Akira Kobori of the Kyoto University for his kind guidance throughout this work.

References.

1) J. Dieudonné: Sur les cercles de multivalence des fonctions bornées. C.R. Acad Sci. Paris 190 (1980).

:Recherches sur quelques problémes relatifs aux polynomes et aux fonctions bornées d'une variable complexe. Thése de Paris; Ann. Sci. Ecole Norm. Sup. 48 (1931).

2) R. Nevanlinna: Uber die schlichten Abbildungen des Einheitskreises. Oversikt av Finska Vetenskaps-Soc. Förh. (A) 62. 1919–1920.

3) F. Simonart: Sur les transformations ponctuelles et leurs applications geometriques; la représentation conforme. Ann. de la Soc. sci. de Bruxelles 51 (1931).

4) S. Izumi: Tôhoku Math. Journ. 32 (1930). or see Bieberbach, "Lehrbuch der Funktionentheorie". Bd II. S. 139-140.