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60. Theorems on the Cluster Sets o[ Pseudo.
Analytic Functions.

By Tokunosuke YOSIDA.
Kyoto Technical University.

(Comm. by K. KUNUGI, M.J.A., June 12, 1951.)

Let D be a domain on the z-plane and C be its boundary. Let
E be a bounded closed set of capacity) zero, included in C and Zo
be a point in E. Let w---f(z) be a single-valued function pseudo-
analytic in D. Th.e cluster set .(>) is the set of all values such
that a limf(z,), where z,, (n 1, 2, ...) is a sequence of points

tending to z0 inside D. The cluster set S*( is the intersectionz0
of the closure of the union US,m for all z belonging to the part
of C--E, which lies in iz-Zol r.

Since E is of capacity zero, by Evan’s theorem’), we can dis-
tribute a positive measure dry(a) on E such that its potential

u(z) Ilog z_dt4a),
is harmonic outside E, excluding z--- , and has boundary value
+ at any point of E. Let v(z) be its conjugate harmonic func-
tion and put

(z) e"/’’ r(z)e’ re’.

The niveau curve C, r(z) const. r (0 < r + ) consists of
a finite number of Jordan carves surrounding E. Let J, be its
component which surrounds Zo. Let V, be the closure of the set
of all values taken by f(z) in the part of D, which lies in the
interior of J, Then .q( is identical with the intersection of all
V,. Let M, be the closure of the union US,m for all z belonging
to the part of C-E, which lies in the interior of J, Then .,’*(

is identical with the intersection of all M,. Let (P) denote the
class of functions w =f(z)which are single-valued and pseudo-
analytic in D and for which the integral

dr
rD(r)

( 1

diverges, where D(r) is the smallest upper bound of the
’Dilatationsquotient’ D,I. of w =f(z) on the part of C which
lies in D.

1) ’Capacity’ means logarithmic capacity in this paper.
2) G.C. Evans: Monatshefte f. Math. u. Phys. 43 (1936).
3) O. Teichmiiller: Deutsche Math. 3 (1938).
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Let G be a domain on the w-plane bounded by a Jordan curve
and a bounded closed set F. We introduce a Riemannian

metric

ds (w) dwl (2)

on G, where (w) is a non-negative, continuous function in G such
that the metric gives G a finite area.

Lemma 1. Let w =f(z) be a function of (P and be a sub-
domain of D such that its boundary does no contain any point of
C--E and any value taken by f(z) in lies in G. Let A(r) be the
area of the Riemannian image of the par of , which lies between C
and Co and L(r) be the length of the image of the part of C, which
lies in ,,I. Then we have

lim L(r) =0. (3)
r.+ A(r)

Proof. Let C be the part of C, which lies in .J and be its
image on the ’-plane by ---(z). Let z z() be the inverse
function of "----(z) and put w()---f(z()). If we denote the dif-
ferential coefficient of w() along by w, then we have

L(r) I (w()) w’l rd.
Hence, by the inequality of Schwarz, we have

(L(r)):

__
I rd 81 : w l rd S 2 rr I " w l rd (
0. Or 0.

Since DI,--DI,, we have

1 r (L(r)):.dr < rd t <2 A(r)--A(r) 4
r, rD(r) r. D(r)

where r r. Letting r -, r, we have

dr <2 dA(r)
2rrD(r) (L(r))

Let J. be the set of all values r such that L(r) /A(r)logA(r),
then we have

1 dr <2 dA(r)

_
dt

rD(r) (L(r))" A(r.) t(log t)"
+ o

4) L. Ahlfors: Acta Soc. Sci. Fenn. N. s. 2 (1937).
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Since the integral (1) diverges, we have (3)’ in the case when A(r)
is not bounded. If A(r) is bounded, then we have lim L(r)--0 by

(4), so that we have (3).
Lemma 2. If the set F is of capacity positive, then there exists

a metric (2) which gives F a positive length. Suppose further tha F
is not covered by the closure of a finite covering surface W of G. If
we denote the area and the lengSh of the relative boundary of W by
A and L respectively, then we have A hL, where h is a positive
constant.

Proof. Since F is a set of capacity uositive, we can distribute
a positive measure d(a) on F such that its potential

is harmonic in the complementary domain G(F) of F, which contains
G, excluding w o, and has boundary values not greater than
the Robin’s constant / of G(F). Let (w) be its conjugate.
harmonic function and put (w)--exp {_(w)+ i(w)}. The
functions Io(w) and w(w)! are single-valued. Let/ be a Jordan
curve or a finite number of Jordan curves surrounding F, then
we have

Hence we can put (w)= lo’(w) l/(1+1 (w)1) in (2). The area of
G is not greater han r. Since $(w) / in G, the length of F is
positive. Hence, by Ahlfors’ theory of covering surfaces, we
have A hL

Lemma 3. If a function w--f(z) of (P) is bounded in D and

lim ]f(z)]_M (5)

for every point z of C--E, then ]f(z)

__
M in D.

Proof. We suppose, contrary to the assertion, that there
exists a point z in D such that If(z)l > M. Since f(z) is bounded,
there exists a constant K such that lf(z) l K in D. We have

K>M. Lt M be a constant such that If(z)iM M. We
choose the domain G such that F is the circle lwl----M and F is

a bounded closed set of capacity positive lying outside the circle

Iwl----K+I. Then there exists a metric of Lmma 2. Let ,/ be

5) R. Nevanlinna" Eindeutige ana|ytische Funktionen (1936).
6) L. Ahlfors" Acta Math, 65 (1935).
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the set of all points z in D such that w =f(z) lies in G. Since
f(z,) lies in G, fl is not empty. The boundary of does not
contains any point of C-E by (5). Let ro be a number such that
z lies in the interior of the niveau curve C0. Let A(r) be the
area of the Riemannian image IF of the part of fl, which lies
between C and C and L(r) be the length of the image of the
part of C, which lies in ., respectively by w -f(z). Since the
closure of W does not cover F, by Lemma 2, we have

A(r) h(L(r) +.L(ro)),

where h is a positive constant. Hence, by Lemma 1, A(r) is
bounded.

Let Ms be a constant such that If(z)i M... M. We denote
the circle wi----Ms by F, the domain bounded by F and F by G
and the set of all points z in D such that w----f(z) lies in G by
fl. If the closure of , is contained in D, then the Riemannian
image of by w----f(z) is a finite covering surface of G, which
has not relative boundary. Since the closure of this covering sur-
face does not cover F, we arrive at a contradiction by Lemma 2,
so that contains at least a point of E on its boundary. Hence
C meets the boundaries of and , for a sufficiently large r, so
that we have limL(r)]>0. Hence, by Lemma 1, A(r) is not

bounded, which is a contradiction. Therefore [f(z)[M in D.
Theorem 1. If w f(z) is a function which belongs to the class

(P), then $2--S/)--.:*(o is an open set. Suppose further that 2 is
not empty, then w---f(z) takes every values in 12, except those be-
longing to a set of capacity zero, infinitely often in any neighbour-
hood of co.

Proof. We choose the domain G bounded by a Jordan curve
F and a closed set F such that its closure and S( have no point
in common and .’)and G have at least a point in commoa. Since
M, is the closure of the union USf for all z belonging to the
part of C-E, which lies in the interior of J, there is a number
ro such that M and the closure of G have not any point in com-
mort for every rr0. Let D(G) be the set of all points z in D
such that w-----f(z) lies ia G. Then the boundary of D(G) does
not contain any point of C--E, which lies in the interior
Let Wo be a point of .(’ contained in G Then there exists a
sequence of points z, (n 1, 2, ...) tending to zo inside D such
that Wo---limf(z,). We denote the component of D(G), which

contains z, by

7) L. Ahlfors: Loc. cit. 6).
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If there exists a component .J which contains infinitely many
points z, then Zo is a boundary point of ,,/. In this case, we
denote the part of J, which lies in the interior of Jo by t. If
such a component does not exist, then the sequence {,} contains
infinitely many distinct components. Since the curve J. does not
meet infinitely many distinct components ,,/, for every
is contained in the interior of J for a sufficiently large n, that is,
the sequence {,t,,} tends to z0. In this case we denote the union
of all ,J,, which lie in the interior of Jo by A. Let ,J(r) be the
part of ,, which lies outside of C and W be its Riemannian image
by w--f(z). Let A(r) be the area of W and L(r) be the length
vf the image of the part of C, which lies in A. Then we have
the same relation as (3) of Lemma 1.

Let G be a subdomain of G, which contains wo and whose
closure lies in G and A’ be the set of all points z in ,,1 such that
w =f(z) lies in G’. If A contains a sequence of components
tending to Zo, then the closure of the set of all values taken
by f(z) in a component of J is identical with the closure of
G by Lemma 3, so that A(r) is not bounded. If contains a
component which has Zo on its boundary, then C meets the
boundaries of J and for a sufficiently large r, so hat lim L(r) 0.

Hence A(r) is not bounded. Therefore we have in all cases
lim A(r) +

r-).

If we suppose, contrary to the assertion, that /2 is not an
open set. Then we can choose the domain G such that F is a
bounded closed set of capacity positive lying outside .’) Since
V is the closure of the set of all values taken by f(z) in the part
vf D, which lies in the interior of J, there is a number r such
that V and F have not any point in common for every rr,.
We can choose ro such that ro r. Then, by Lemma 2, there is
a metric and a positive constant h such that

Hence we have

A(r)

_
h(L(r) + L(ro)).

__1 ;5 lim L(r)+L (to) 0
h ;- A r)

which is a contradiction, so that is an open set.
Let /2 be a component of /2 and F, be the set of all values

in /2,,, which is ommitted by f(z) in a neighbourhood of Zo. We
choose the domain G such that its closure is contained in 2 and
F is identical with F,. Let r be a number so large that J lies
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in this neighbourhood of zo for every r___ r. If we suppose that
F, is a set of capacity positive, then, by the same reason as above,
we arrive at a contradiction. Hence , is a set of capacity zero,
so that, by the well known method, we can prove that the set of
exceptional values is of capacity zero.

Theorem 2. If the se$ E is contained in nie number of
connected components of the boundary C and 2 is no$ empty., $hen

w----f(z) takes every values, with two possible exceptions, belonging
to any connected component 2, of 2 infinitely often in any neigh-
bourhood of Co.

Proof. We suppose, contrary to the assertion, that there are
three exceptional va|ues in 2 and denote the set of these values
by F. Then here is a number r such that f(z) does not take any
value of F in the part of D, which lies in the interior of J,.,. We
choose the domain G bounded by F and a Jordan curve F such
that ts closure is contained in 2 Then there is a number r
such that M and the closure of G have not any point n common
for every r ::>_ r. We put ro--Max (r, r,) and use the proof of
Theorem 1.

Let I be the area of G and put A(r) IS@). When (r) is a
single domain, we denote its characteristic number by and put
W---Max (O, v). When ,/(r) consists of a finite number of con-
nected components, we denote the sum of such" numbers for every
components by the same notation v+. Since F consists of three
points, we have by the fundamental theorem of Ahlfors’

+

_
2S(r)---h(L(r) + L(ro)) ( 6

where h is a positive constant.
Let re(r)be the number of Jordan curves contained in the

boundary of (r), whose images by w--f(z) lie on F. Then, by a
method of Kunugis, we have

re(r) S(r)+ h’(L(r) + L(ro)} 7

where h is a positive constant. Let n(r) be the number of con-
nected components of the union of C and the closures of the
domains bounded by C, which contain a point of E. Then n(r) is
bounded and v/m(r)+n(r), so that we have from (6) and (7)

1 (h + h,)L(r) + L (to) +
S(r) S(r)

Since A(r) IS(r) is not bounded, we arrive at a contradiction by
(3).

8) K. Kun.ugi" Proc. 16 (1949), jap. Jour. of Math. 18 (1942).
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Remark 1. Lemma 3 is an extension of a theorem which we
have proved recently"). Theorem 1 is an extension of a theorem
of Tsuji’). Theorem 2 contains the case when E consists of a
single point and the case when D is simply connected, so that it
is an extension of a theorem of Kunugi’’) and that of Noshiro’).

Remark 2. Let D(r) be a continuous function such that
D(r) 1 for every r to. Then the function w--f(z)

{ dr + iO} z=le-’,f(z) --- e, exp
J,.rD(r) r

is single-valued and pseudo-analytic in the domain Olzl l/ro.
Its ’Dilatationsquotient’ is equal to D(r) at every points on the
circle lzl--1/r. If the integral (1) converges, then the function
w =f(z)is bounded. Hence (P) is the maximal class for which
we can extend the theory of cluster sets.

9) T. Yosida Proc. 26 (1950).
10) M. Tsuji: Proc. 19(1943).
11) K. Kunugi" Loc. cit.
12) K. Noshiro: Jour. Math. Soc. Jap. 1 (1950), Nagoya Math. 1 (1950).


