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73. On B*-Algebras.

By Masanori FUKAI’A.
(Comm. by K. KtrNUGI, M..A., July 12, 1951.)

1. Introduction. It can be shown that, for any B*-algebra R
wih the unit element, the following three conditions are equivalent

(A). For every xeR, =q=O, there is a linear positive functional
f (x) such that f(x*x)3>O.

(B). The set Do of all elements whose spectrum is positive is
identical with the set ., {u/f (u)0, for all fsPo}, where Po denotes
the set of all linear positive functional f(x) on R, with f(e)= 1.

(C). For every xeR, x*x+e has the inverse element.
A B*-algebra satisfying one of these conditions is called a C*-

algebra. We assume here, that Po under consideration is not
empty.

This paper continues the study of B*- and C*-algebras. We
assume that P,, is not empty. First, we shall prove that every
B*-algebra with the unit element for which K 0 are valid is a
C*-a]gebra, that the quotient algebra of any B*-algebra with the
unit modulo any maximal two-sided ideal is a (simple) C*-algebra.
Gelfand and Neumark conjectured that every B*-algebra would be
the C*-algebra, but this is reduced to the following questions: (1)
Is there a B*-algebra for which Po is empty ? (2) Is there a B*-
algebra for which K= (0) (or, N(x) = I[ x ![) ? We cannot answer
to these questions here. [2, 6]

Next, we shall prove certain theorems on the ideals of B*- and
C*-algebras, simply and without use of the representation by
operators on the Hilbert space; some of these are originally due
to I.E. Segal [1]. The method of proof of Lemmas 1 and 2 has
already been shown by I. Kaplansky, but we repeat it here for t.ae
sake of completeness [6].

2. The Theorems. A C*-algebra R with the unit element e
is a normed ring, over the field of complex numbers, which satis-
fies the following conditions"

(a) An involutorial anti-automorphism x--,x is defined on R,
suc. that (i) (ax+ BY)* x*+y*, (ii) (xy)* = y’x*, (iii) x** x;

(b) [I x*X]! [I xi[, for every xeR;
(c) x*x+e possesses the (two-sided) inverse for every xeR;
(d) R has the unit element e and is complete in the norm.
A B*-algebra R with the unit element is a normed ring, over

the field of complex numbers, which satisfies the conditions (a), (b)
and (d).
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A positive linear functional f(x) on a B*-algebra is a complex-
valued linear functional on he complex Banach space R such hat
f(x*x)__O, for every xsR. We de.ote by Po he se of all positive
linear functionals on R with f(e) 1.

The spectrum of an elemen x of a B*-algebra R is Che set of
all complex numbers such Cha x- e has no (wo-sided) inverse.

Every elemen u wih u u* is called hermiia. The spec-
Crum of an hermitian element of a B*-algebra consists of real
numbers (Appe.dix, (2), below). If Che spectrum of an hermitian
element consists of n.on.-negaive numbers, he element is said
positive. In every C*-algebra, the element of he form x*x is
positive, but i is ot known for B*-algebras in general.

Lemma 1. For any closed left ideal" I in a B*-algebra, x*xI
implies xI (or, xx*I implies x*D.

If I is a closed righ ideal, then x*xI implies x*I (or, xx*sI
implies xs.

Proof. Let I be any closed left ideal and le x*xsL As x*x
is hermiian, se+(x*x) has the iverse for every s0. Take the
hermiian elemen w (x*x):{se+(x*x):}-. As x*x commutes with
{se + (x*x)} -’, wsL We show hat x lim xw. For his, by (b),

0

it would be sufficient to see that [x(w--e)[ {x(w--e)}*{x(w--e)}
! (w--e) x*x (w--e) t (w--e)x*x O, when s 0. Let R(u),

u x’x, be the totality of elements which and whose adjoints
commute with all those elements of R which commute with x*x.
R(u) is a closed commutative B*-subalgebra of R, ad contsins
x’x, e aad {ee+(x*x)}-. Then, a tieorem oa commutative B*-
algebras can be applied, and we have [ (w-e)x*x ] s] x*x {se
+ (x’x):}-: [ e. suo u(M)[. Is + {u(M)}:]-:, (u x’x), where M ad

denote the maximal (self-adjoiat) ideal and the totality of
maximal ideals of R(u), respectively. As sup lu(M) l. [ + {u(M)}]-

max Z/(e +Z )- 9
16_/u/. e we have lim [[ (w--e)x*x 0; so

0

we have lim xw=x and lim wx*=x*. Since xweI, as weIand I
is closed, we have xeI.

If I is a right closed ideal and x*xeI, then wx* and x*eL
In the same ma.ner for xx*, we have Lemma 1.
Lvmma . (Segal and Kaplansky) A closed two-sided deal I in

a B*-algebra is self-adjoint, that is" xel implies x*I.
Proof. Let x be any element o’ a two-sided elo.ed ideal I.

As xx*I, Lmma 1 shows that x*I.
Lemma 8. (Gelfand aad Neumark) If ueR is any potie aad

regular element of a B*-algebra R, ad v is any hermitian element,
hen u +iv regular.
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Proof. The equation (x + iy) (u +iv) (u + iv) (x+ iy) e, or
xuyv e, xv+yu---0 has the hermitian solutions x, y. To se
this, put p e+ {vu-), then p u (e + w’) u-, where u u and
w tl-lpul "1, NOW p is regular, and x u-’p-, y=--u-’p-(vu-}
are the solutions.

Lemma 4. (Gelfand and Neumark) If R is a C*-algebra with the
unit, and if u, v are any positive elements, then u +v is po.itive.

Proof. It must be proved in general that u+v+e is regular.
As u= u+e is positive and regular, it suffices to prove the follow-
ing Lemma 4.

Lemma 4. (Gelfand and Neumark) If R is a C*-algebra with
the unit, and if u is any positive and regular element and v any
positive element, then he spectrum of uv (and vu)is real and non-
negative.

Proof. That the spectrum of uv is real is proved without (c).
In fact, let u u’, v v", where u is positive and regular and
v is positive, then uv u (p’p)u- p=vu, as p*p has the real
spectrum and uv and p*p have the same spectrum, the spectrum
of .v is real.

Next, by (c), w=uv+e=u,(p*p+e) u- shows that v+e is
regular, which completes the proof.

Let E be the real Banach space of all hermitian elements of
a C*-algebra R, with the original norm in R, and let D and Do
denote the sets (in E) of all positive and positive, regular elements
of R, respectively. Then, by Lemma 4, D is a convex, conical
body in E, and Do is the interior of D.

Le ./be any closed left ideal of a C*-algebra R, and let H
be the linear closed subspace of E spanned by hermitian compo-
nents of all elements of L On account of the openness of Do and of
Lemma 3, we can easily find that H does not contain any point of Do..

Lemma 5. For every element x=l=0 of a C*-algebra R, there
is a positive linear functional f(x) such hat f(x*x) [[ x [[’, f(e) 1.

Proof. In E, the elements of the for.m ae+x*x, a and
being any real numbers, forms a linear, closed subspace, E. Define
a functional fi(u) on E such that fi(e)= I, fi(x*x)= !1 x*xl.I and
f(u) a+B II x*x !1, for u ae+Bx*x. It is easily seen that fi(u)
is a positive linear functional on E,. By the well-.known method
of extension of positive linear functionals and the preceding con-
sideration, we are able to obtain a linear functional f(x) on E such
that f(D)>O and f(u) fi(u) for ueE. Defining f(y) f(u)+if(v),
for y u.+ iveR, we have, since y*yeD (by (c)), for every yeR, a
positive linear functional on R, which has the required property.

For any two-sided closed ideal I in a B*-algebra, on account
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of Lmma 2, an element x belo.g to I if and only if each of its
hermitian components belongs to I; and, on account of Lemma 1,
an hermitian element u belongs to I if and only if u belongs to
I. As every positive hermitian element u has the form u v
in a B*-algebra, waere v is positive and hermitian, thus every
hermitian element is the difference of two positive hermitian

( v+u v-u)elements u/ =---, u_
2

therefore, any two-sided closed

ideal of a B*-algebra is generated by all its positive hermitian
elements u v:, where veL

Now, we can prove the following Lemma.
Lemma 6. For any two-sided closed ideal I of a B*-algebra R,

it holds"
inf [ (x+ z)*(x+ z) [ inf x*x+ z

Proof. For xeI, this identity is trivially valid.
As i.f ] (x+ z)*(x+ z) ] inf ] x’x+ z is clear, we will prove

the converse inequality. Since (x + z)*(x+z) ] ] x*x + z*z .
+ ] z’x+ x*z and z*x+ x*zel holds for every two-sided ideal I, we
have inf I] (x+z)*(x+z)] inf]l x*x+z*zl]+infll
+ z*z. The preceding remark shows that nf] x*x + z*z

inf x*z + z inf x*x+z l], which completes the proof.
hermttia

positive

The two-sided closed ideal K x/f(x*x)= O, for all fePo} of
a B*-algebra is said the kernel of the algebra, and a function

N(x) on R is defined by N(x)= sup f(x*x)
Theorem 1. The following conditions for a B*-algebra are

equivalent
(1) P0emptY and K= (0), (2) Po=empty and N(x)

]] x], for every xeR, (3} The condition (c).
Proof. (3) (2), On account of Lemma 5 (2) (1), Evident

(1) (3), Omitted here.
Theorsm . Any C*-algebra with the unit is isomorphic and

sometric to a self-adjoint algebra of the operators in a Hilbert
space, which is closed in the uniform norm topology.

Proof. Omitted (cf. [2]).
Lemma 7. Let I be a closed two-sided ideal in a B*- or C*-

algebra R with the unit. Then the quotient algebra R/I is again
a B*- or C*-alg-ebra.

Proof. That the quotient algebra R/L with the norm
=inf x ], Xe R/I, is a normed ring can be easily proved as usually.
Lemma 2 shows that the correspondence x x*, where x, x*
denotes the residue classes of x, * modulo I, satisfies the condi-
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tions (a) and (d) or (a), (c) and (d). Further, we can see, on
account of Lemma 6, that II x II ----II x*x I!, which is the condition
(b). This completes the proof.

Semi-Simplicity and Weatc Semi-Simplicity. A B*- or C*-alge-
bra with the unit element is called wa.ly semi-simple, if the inter-
section of all the maximal left ideals is the null ideal and the
intersection of all the maximal right ideals is the null ideal.

A B*:- or C*-algebra is called semi-simple if the intersection of
all the maximal two-sided ideals, which is defined to be the radical
of the algebra, is the null ideal, and is called simple if its only
two-sided ideals are the null ideal and the whole algebra.

Lemma 8. For any left closed ideal I in a C*-algebr., there
is a f(x)e Po such that f(*x)= O, for all xeI.

Proof. The linear cloed subspace H does not contain any
point of the convex, conical open set Do. By the well-known
theorem of Ascoli-Mazur [3, 4], there is a (real-valed) linear func-
tional f(x) on E such that f(Do) 0, f(H) 0 and f(e) 1 con-
sequently it holds that f(x*x) 0, for all xeR and f(x*x)= 0, for
every xeI (Cf. Lemma 1). g(x) f(u) +’,f(v) x u+iveR is the
required functional of Po.

By this lemma, we can find that, for every maximal left (or
right) ideal I of any C*-algebra R, there is a f(x)e Po such that
I -{xeR/f(x*x)= O}, and that the weak semi-simplicity of any
C*-algebra is equivalent to the condition K = (0).

More generally, we have the following
Theorem 3. Any closed two-sided deal I in a C*-algebra is

the intersection of all its maximal left ideals each of which contains
the ideal or is the intersection of all it.s maximal right ideals each
of which contains the ideal.

Proof. Consider the r.esidue class C*-algebra R/I of R modulo
the given wo-sided closed ideal L then R/I is again a C*-algebra,
to which we can apply Theorem 1 and the preceeding remark, to
obtain, the theorem.

Theorem 3 is equivalent o the following theorem 3 due to Segal
Theorem 3. (I.E. Segal) For any two-sided ideal in a C*-alge-

bra, there is a collection of positive linear functionals (or of minimal
positive linear functionals) such that the ideal consists of just those
elements which vanish in every functional of the collection.

Theorem $. Eery simple B*-algebra with the unit for which
we assume that P0 is not empty is a C*,algebra.

1) Cf. Godement, Trans, 1948, Appendix O. This fact has an important appli-
cation to the theory of unitary representation of the loctly compact group. [7, 8]
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Proof. This can also simply see as follows: Let be the
set {u/usE andf(u) 0, for all fePo}, then K {x/x*xe)[(--)},
and K (0) implies that, for every x = 0, there is a f(x)ePo such
that f(x*x) O.

Theorem 5. The quotient algebra of any B*-algebra with the
unit moclulo any maximal two-sided ideal is a simple C*-algebra.

Proof. Let R be any B*-algebra with the unit element and
any maximal two-sided ideal of R. Then, the quotient algebra R/I
is, by Lemma 7, a B*-algebra. As there is o two-sided closed ideal
in R/I, R/I must be a C*-algebra, by Theorem 4.

Corollary. Every maximal two-sided ideal in any B*-algebra is
the intersection oi all maximal left ideals which contain the ideal;
and the same, for maximal right ideals.

Theorem 6. Eery semi-simple B*-algebra with the unit element
has an isometric isomorphism ito the direct product algebra of
simple C*-algebras of bounded operators on a Hilbert space.

Proof. We take he totality J, aeA of all maximal two-sided
ideals of a B*-algebra R. Let the quotient algebra R/J be iso-
morphic with the C*-operator-algebra C on Hilbert spaces
Let us define the Hilbert space ,j as follows: the element $ of
is the vector-valued functions defined on the set A $ {$, aeA},
for which sup II $ ll oo the norm being defined by il II sup II

asA aeA

By the Jordan-yon Neumann criterion we can define an inner
product ($, v), induced by this norm, and find that 3 is a Hilbert
space. For every element, x of R, we make correspond the operator
T(x) on 2j such that T(x)$ {T (x) $, aeA}, where T(x) denote
the image on C of the element in R/J corresponding to x. Then
it is easily seen that the correspondence x-* T (x) is a continuous
homomorphism o R into the direct product algebra of C*-algebras
of operators on Hilbert spaces .

As it is easily seen III 1(x)ill sup I][ T(x)I[I, and Ill T(x)Ill
---II x ]l=N(x)--s.up 2(x*x)-1] x]l, or each C, and or every

C, aeA, where P denotes the totality of positive linear unctionals
f(x)ePo such that f(J)= O. Therefore T(x.)----0 if and only if
xeJ.

Corollary. Every semi-simple B*-algebra is weakly semi-simple.
Appendix. We will add some remarks.
(1) Let R be a normed algebra without the unit element such

that the involution x-x* is defined and satisfies: (1
+By)* x*+y*, (2) (xg)* y’x*, (3) x** x, (4) there is a
constant h0 such that hllxl!’__lix*xll, for all xR. Then R
can be imbedded into a normed algebra with the unit element
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satisfying (1)-- (4), with the equivalent norm.
Proof. For every xeR, we make correspond the operator A

on the Banach space R such that A.z xz(zeR), and consider
all those bounded operators hi+ A" (hi+ A) z az+ xz (zR) in
which we define (hi+ A)* I+A*. They form a normed al-ebra
R(D with the unit L for which (1)--(3) are obviously valid.

By (4) and xy ] x ]. ] y ]], we have ] x*x h-. x and
h]x[[/[[x*]h-; as [[I+A.I=sup)z+xz sup ]]z+xzl)

+xz+x*x.z ll=h-: II (I+ A,)*(I+ A:)il, we have h:ll !+ A: il  llI+ A:,I!
and h ]] I+ A:. [! [] I+ A: [[ thus, we have h ]] I+ A: [[ [] (I+ AA*
(I+ h II I+ A: [[, which proves (4).

(2). Let A be a commutative normed algebra with an involu-
tion such that the conditions (1)--(4) are valid. Then A is repre-
sented isomorphically and isometrically onto the ring of all complex-
valued, continuous, bounded functions on the compact Hausdorff
space of all maximal ideals of the normed algebra A(D such that

x{(A)} =0 and x*(M)= x(M), where (A) denotes the maximal
ideals A in A(.

Proo[. We only prove the realness of the spectrum of any
hermitian element u in A(D. Let v be the element v d

(iu) As v- =v*, v*v=v-v=e, we have h ] v v*v }]
0

h- [ v ![ so we have" h- ][ vTM [ h -, thus, sup v(M)
1 in the same manner, we have sup]v-( 1; therefore,

]v(] 1, for every Meg., which completes the proof.
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