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73. On B*-Algebras.

By Masanori FUKAMIYA.
(Comm. by K. KuNuGI, M.J.A., July 12, 1951.)

§ 1. Introduction. It can be shown that, for any B*-algebra R
with the unit element, the following three conditions are equivalent :

(A). For every xeR, ==0, there is a linear positive functional
f (x) such that f(a*x)>>0.

(B). The set D, of all elements whose spectrum is positive is
identical with the set ®, = {u/f (u)>0, for all feP,}, where P, denotes
the set of all linear positive functional f(x) on R, with f(e) = 1.

(C). For every zeR, x*x+e has the inverse element.

A B*-algebra satisfying one of these conditions is called a C*-
algebra. We assume here, that P, under consideration is not
empty.

This paper continues the study of B*- and C*-algebras. We
assume that P, is not empty. First, we shall prove that every
B*-algebra with the unit element for which K = 0 are valid is a
C*.algebra, that the quotient algebra of any B*-algebra with the
unit modulo any maximal two-sided ideal is a (simple) C*-algebra.
Gelfand and Neumark conjectured that every B*-algebra would be
the C*-algebra, but this is reduced to the following questions: (1)
Is there a B*-algebra for which P, is empty? (2) Is there a B*-
algebra for which K<=(0) (or, N(x)=k||«l])? We cannot answer
to these questions here. [2, 6]

Next, we shall prove certain taeorems on the ideals of B*- and
C*-algebras, simply and without use of the representation by
operators on the Hilbert space; some of these are originally due
to I.E. Segal [1]. The method of proof of Lemmas 1 and 2 has
already bzen shown by I. Kaplansky, but we repeat it here for tae
sake of completeness [6].

§2. The Theorems. A C*-algebra R with the unit element e
is a normed ring, over the field of complex numbers, which satis-
fies the following conditions :

(8) An involutorial anti-automorphism x—z* is defined on R,
such that (i) (ax+By)* = ax*+By*, (i) (xy)* = y*x*, (i) +** = x;

(b) ||a*x|| = || «|*>, for every xcR;

(¢) a*x+e possesses the (two-sided) inverse for every xeR ;

(d) R has the unit element e and is complete in the norm.

A B*.algebra R with the unit element is a normed ring, over
the field of complex numbers, which satisfies the conditions (2), (b)
and (d).
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A positive linear functional f(x) on a B*-algebra is a complex-
valued linear functional on the complex Banach space R such that
Aa*x)=0, for every xzeR. We denote by P, the set of all positive
linear functionals on R with f(e) = 1.

The spectrum of an element x of a B*-algebra R is the set of
all complex numbers 2 gsuch that x — ie has no (two-sided) inverse.

Every element u with u = u* is called hermitian. The spec-
trum of an hermitian element of a B*-algebra consists of real
numbers (Appendix, (2), below). If the spectrum of an hermitian
element consists of non-negative numbers, the element is said
positive. In every C*-algebra, the element of the form az*zx is
positive, but it is not known for B*-algebras in general.

Lemma 1. For any closed left ideal*l in a B*-algebra, a*xel
implies xel (or, xa*el implies x*el).

If I is a closed right ideal, then x*xel implies x*el (or, xa*el
implies wel).

Proof. Let I be any closed left ideal and let z*zel. As x*x
is hermitian, se+ (x*x)*> has the inverse for every £>0. Take the
hermitian element w = (x*x)*{ce+ (x*x)*}~'. As x*xr commutes with
{ee+ (x*x)*}~', wel. We show that x = lino1 xzw. For this, by (b),
it would be sufficient to see that lix(w—e)|l§*= {zx(w—e)}*{x(w—e)}||

= || (w—e) a*x (w—e) || = || (w—e)}’w*z|| >0, when ¢ —0. Let R(u),
u = x*r, be tne totality of elements which and whose adjoints
commute with all those elements of R which commute with z*zx.
R(u) is a closed commutative B*-subalgebra of R, and contains

x*x, ¢ and {ee+(x*x)’}~'. Taen, a theorem on commutative B*-
algebras can be applied, and we have || (w—e)w*z|| = &%| x*x {ce
+ (x*x)*} || = e*-sup | u(M)|-[e+{u(M)}i?, (u = x*x), where M and

M denote the m;gnmal (self-adjoint) ideal and the totality of
maximal ideals of R(u), respectively. As :423? | w(M)|-[e+{u(M)}T1?

< I}i?fwﬂ/(e-*-ﬁ)_g = TG:%?V/?’ we have 133)1 [| (w—e)x*x|l = 0; 20
we have E)Igl zw = 2 and lelgl wx* = g*. Since zwel, as wel and [
is closed, we have xel.

If I is a right closed ideal and z*zel, then wa* and & el.

In the same manner for zz*, we have Lemma 1.

Lemma 2. (Segal and Kaplansky) A closed two-sided ideal [ in
a B*-algebra is self-adjoint, that is: axe/ implies z*el.

Proof. Let x be any element of a two-sided closed ideal 1.
As zx*el, Lemma 1 shows that a*el.

Lemma 3. (Gelfand and Neumark) If ueR is any positive and

regular element of a B*-algebra R, and v is any hermitian element,
then u+i» is regular.
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Proof. The equation (x+4y) (u+1iv) = (u+iw) (x+1y) =e, or
xu—yv = e, xv+yu = 0 has the hermitian solutions =z, y. To see
this, put p = e+ (vu™")?, then p = u, (e+w* u,”', where u = u,® and
w = u;,""pu;"". Now p is regular, and x =u""p", y = —u"'p '(vu™")
are the solutions.

Lemma 4. (Gelfand and Neumark) If R is a C*-algebra with the
unit, and if %, v are any positive elements, then u+v is positive.

Proof. It must be proved in general that u+v+e is regular.
As %' = u+e is positive and regular, it suffices to prove the follow-
ing Lemma 4'.

Lemma 4'. (Gelfand and Neumark) If R is a C*-algebra with
the unit, and if % is any positive and regular element and v any
positive element, then the spectrum of wv (and vu) is real and non-
negative.

Proof. That the spectrum of uv is real is proved without (c).
In fact, let u = %%, v = v, where u, is positive and regular and
v is positive, then uv = u, (p*p) u,™', » = vu, ; as p*p hag the real
spectrum and v and p*p have the same spectrum, the spectrum
of uv is real.

Next, by (¢), w = uv+e = u, (p*p+e) u,”' shows that uv+e is
regular, which completes the proof.

Lat E, be the real Banach space of all hermitian elements of
a C*-algebra R, with the original norm in R, and let D and D,
denote the sets (in Ey) of all positive and positive, regular elements
of R, respectively. Then, by Lemma 4, D is a convex, conical
body in Eg, and D, is the interior of D.

Let I be any closed left ideal of a C*-algebra R, and let H,
be the linear closed subspace of E. spanned by hermitian compo-
nents of all elements of I. On account of the openness of D, and of
Lemma 8, we can easily find that H; does not contain any point of D;..

Lemma 5. For every element x==0 of a C*-algebra R, there
is a positive linear functional f(x) such that f(z*x) = || z ||%, fle) = 1.

Proof. In Er, the elements of the form ae+pBx*x, a and &
being any real numbers, forms a linear, closed subspace, E,. Define
a functional fi(u) on E, such that fi(e) =1, fi(z*x) = | «*x|| and
filu) = a+ Bl z*x ||, for u = ae+pBx*x. It is easily seen that fi(u)
i3 a positive linear funectional on E,. By the well-known method
of extension of positive linear functionals and the preceding con-
sideration, we are able to obtain a linear funectional f(z) on Er such
that f(D)=0 and f(u) = fi(u) for ueE,. Defining f(y) = f(u)+u (),
for y = u + tweR, we have, since y*yeD (by (c)), for every yeR, a
positive linear functional on R, which has the required property.

For any two-sided closed ideal I in a B*-algebra, on account
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of Lamma 2, an element x belongs to I if and only if each of its
hermitian components belongs to I; and, on account of Lemma 1,
an hermitian element u belongs to I if and only if %* belongs to
I. As every positive hermitian element u has the form u = ??
in a B*-algebra, wnere v is positive and hermitian, thus every
hermitian element is the difference of two positive hermitian
elements (u+ = g—gu, u_ = 3’53‘), therefore, any two-sided closed
ideal of a B*-algebra is generated by all its positive hermitian
elements u = v* where vel.

Now, we can prove the following Lemma.

Lemma 6. For any two-sided closed ideal I of a B*-algebra R,

it holds:
inf” (x+2)*(x+2)[| = in;:' If e*x+2]| .
Proof. For wxel, this identity is trivially valid.
Asgs mf H(e+2)*@+2) || = mf || #*x+2z]|| is clear, we will prove

the converse inequality. Slnce | (@ + 2)*@+2) || Z || a*2 + 2%z
+|| 2*x+ax*2|| and z*x+x*2el holds for every two-sided ideal I, we
have lnf ll(x+z)*(w+z)||gmf||w*m+z*z||+mf||z*x—l-ac*zll-mfﬂx*x

z*zn The preceding “Yemark shows that mf Il oo + 2%z |
= inlf | x*x+2]|| = lnlf || 2*x+2 ||, which completes the proof.
%€ 28
2 hermitian
positive

The two-gsided closed ideal K = {x/f(x*x) = 0, for all feP,} of
a B*-algebra is said the kernel of the algebra, and a function
N(x) on R is defined by N(x) = s;up f(m*x)

Theorem 1. The following conditions for a B*-algebra are
equivalent :

(1) P,==empty and K==0), (2) Py-t=empty and N(x)
=||z||, for every zeR, (3) The condition (¢).

Proof. (38) - (2), On account of Lemma 5; (2) - (1), Evident;
1) - (3), Omitted here.

Theorem 2. Any C*-algebra with the unit is isomorphic and
isometric to a self-adjoint algebra of the operators in a Hilbert
space, which ig clogsed in the uniform norm topology.

Proof. Omitted (cf. [2]).

Lemma 7. Let I be a closed two-sided ideal in a B*- or C*-
algebra R with the unit. Then the quotient algebra R/I is again
a B*- or C*-algebra.

Proof. That the quotient algebra FE/I, with the norm || X||
=1,1:‘£ || 2|, Xe R/I, is a normed ring can be easily proved as usually.

Lemma 2 shows that the correspondence x — x*, where z, z*
denotes the residue classes of z, x* modulo I, satisfies the condi-
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tions (a) and (d) or (a), (¢) and (d). Further, we can see, on
account of Lemma 6, that || x| = || «*z||, which is the condition
(b). This completes the proof.

Semi-Simplicity and Weak Semi-Simplicity. A B*- or C*-alge-
bra with the unit element is called wealkly semi-simple, if the inter-
section of all the maximal left ideals is the null ideal and the
intersection of all the maximal right ideals is the null ideal.

A B*- or C*-algebra is called semsi-simple if the intersection of
all the maximal two-sided ideals, which is defined to be the radical
of the algebra, is the null ideal, and is called simple if its only
two-sided ideals are the null ideal and the whole algebra.

Lemma 8. For any left closed ideal I in a C*-algebra, there
is a f(x)e P, such that fa*x) = 0, for all wxel.

Proof. The linear closed subspace H, does not contain any
point of the convex, conical open set D,. By the well-known
theorem of Ascoli-Mazur [3, 4], there is a (real-valued) linear fune-
tional f(x) on E such that f(D,) >0, f(H,) = 0 and f(e) = 1; con-
sequently it holds that f(x*x) >0, for all zeR and fiz*z) = 0, for
every xzel (Cf. Lemma 1). g¢g(x) = f(u)+if(v), x = u+iveR, is the
required funetional of P,.

By this lemma, we can find that, for every maximal left (or
right) ideal I of any C*-algebra R, there is a f(x)e P, such that
I = {xeR[f(x*x) = 0}, and that the weak semi-simplicity of any
C*-algebra is equivalent to the condition K = (0).

More generally, we have the following

Thesrem 8. Any closed two-gsided ideal I in a C*-algebra is
the intersection of all its maximal left ideals each of which contains
the ideal or ig the intersection of all its maximal right ideals each
of which contains the ideal.

Proof. Congider the residue class C*-algebra R/I of R modulo
the given two-gided closed ideal I, then R/I is again a C*-algebra,
to which we can apply Theorem 1 and the preceeding remark, to
obtain the theorem.

Theorem 3is equivalent to the following theorem 8’ due to Segal :

Theorem 3'. (I.E. Segal) For any two-sided ideal in a C*-alge-
bra, there is a collection of positive linear functionals (or of minimal
positive linear functionals) such that the ideal consists of just those
elements which vanish in every functional of the collection.

Theorem 4. Every simple B*-algebra with the unit for which
we assume that P, is not empty is a C*-algebra.

1) Cf. Godement, Trans, 1948, Appendix O. This fact has an important appli-
cation to the theory of unitary representation of the locally compact group. [7, 8]
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Proof. This can also simply see as follows: Let © be the
set {u/ueEr and f(u) =0, for all feP.}, then K = {x/x*xeDN(—D)},
and K = (0) implies that, for every «==0, there is a f(x)eP, such
that f(x*x) > 0.

Theorem 5. The quotient algebra of any B*-algebra with the
unit modulo any maximal two-sided ideal is a simple C*-algebra.

Proof. Let R be any B*-algebra with the unit element and I
any maximal two-sided ideal of R. Then, the quotient algebra R/I
is, by Lemma 7, a B*-algebra. As there is no two-sided closed ideal
in R/I, R/I must be a C*-algebra, by Theorem 4.

Corollary. Every maximal two-sided ideal in any B*-algebra is
the intersection of all maximal left ideals which contain the ideal;
and the same, for maximal right ideals.

Theorem 6. Every semi-simple B*-algebra with the unit element
has an isometric isomorphism into the direct product algebra of
simple C*-algebras of bounded operators on a Hilbert space.

Proof. We take the totality J., acd of all maximal two-sided
ideals of a B*-algebra E. Let the quotient algebra R/J, be iso-
morphic with the C*-operator-algebra C, on Hilbert spaces 9. .
Let us define the Hilbert space $ as follows: the element & of $
is the vector-valued functions defined on the set A: & = {£,, acd},
for which sup [| €.l <oo; the norm being defined by || £|] = supl! &l

By the Jordan-von Neumann ecriterion we can define an inner
product (&, n), induced by this norm, and find that $ is a Hilbert
space. For every element x of R, we make correspond the operator
T(x) on  such that T (x)§ = {Tu(x)&«, acA}, where T.(x) denote
the image on C, of the element in R/J corresponding to x. Then
it is easily seen that the correspondence x — T (x) is a continuous
homomorphism of R into the direct product algebra of C*-algebras
of operators on Hilbert spaces 9. .

As it is easily seen III T@) ||| = sup I TuCx) ||l , and ||| Z%Ce) ||

=|| 2 ||=N.(zx)= =sup f(x*x) <llell, for. each C., and for every ze

', acA , where P, denotes the totality of positive linear funectionals
f(x)eP, such that f(J,) = 0. Therefore T(x) =0 if and only if
xeNJy.

agA

Corollary. Every semi-simple B*-algebra is weakly semi-simple.

Appendiz. We will add some remarks.

(1) Let R be a normed algebra without the unit element such
that the involution x — z* is defined and satisfies: 1) (ax
+B8y)* = ax*+By*, () (xy)* = y*x*, (3) x** =, (4) there is a
constant 2 >0 such that ||z |F < || 2*x ||, for all xeR. Then R
can be imbedded into a normed algebra with the unit element
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satisfying (1)—(4), with the equivalent norm.

Proof. For every xeR, we make correspond the operator A,
on the Banach space R such that A.-z = 2zz(2¢R), and consider
all those bounded operators al+A,: (al+A.) 2z = az+xz(2eR), in
which we define (al+ A4,)* = al+ A.*. They form a normed algebra
R(I) with the unit I, for which (1)—(3) are obviously wvalid.

By (4) and || ay || <[ 2||-[ly|l, we have || a*x|| <A™ || «|* and

A<zlillz*||<h7; as || I+ AP = supllz + sz sup Iz + 2z
—-Hg}llp |z + 2z (PR !sup Il z + rcz)*(z + xz) Il g/z"'. sup || z+x*2
ozt ateez ll=h"%|| (I+A )*(I+Ax)||, we have h?|| I+ A, || <||T+ Ax||

and 22 || I+ Ax|| S || I+ A. (| ; thus, we have A || [+ A, [P || T+ A)*
I+A) | k2| I+ AL [P, which proves (4).

(2). Let A be a commutative normed algebra with an involu-
tion such that the conditions (1)—(4) are valid. Then A is repre-
sented isomorphically and isometrically onto the ring of all complex-
valued, continuous, bounded functions on the compact Hausdorff
space of all maximal ideals of the normed algebra A(I) such that
2{(A)} =0 and x*(M) = x(M), where (A) denotes the maximal
ideals 4 in A(]).

Proof. We only prove the realness of the spectrum of any
hermitian element w in A(I). Let v be the element v = ™

= 2 (tu)*. As v'=v*, vvo=v_'v=e, we have R*||v|> || v*v]|

270

1 1 _1
<h?||v]|]*, so we have: A= || v™||»<h *, thus, suplv(M)| =
1; in the same manner, we have suplv ‘(M)I = 1 therefore,
|v(M)| =1, for every MeI, which completes the proof.
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