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{Comm. by K. KuNuGI, M.J.A., Nov. 12, 1951.)

Let R be an n-dimensional (n.2), infinitely differentiable,
orientable Riemann space, closed or open. We consider the totality
H of the infinitely diflerentiable exterior differential p-forms
on R which vanish outside compact sets of R. Let da and
er--(-1)’/"(der*)* be the exterior differential and codifferential

of er H, so that we have (de, B) -(e, B). Here
and B* is the adjoint form of B. Let H be the Hilbert space
obtained as the completion of the pre-Hilbert space /, metrized
by the norm 1 a II = (a, er)’. We denote by H the linear subspace
of H consisting of the totality of the infinitely differentiable p-
forms er such that a and ,/er, 3 d+Sd (the Laplacian), both be-
long to H. Surely we have HHH.

Suggested by an interesting paper by A. N. Milgram and
P.C. Rosenbloom’, we will prove the following ergodic theorem as
a stochastic interpretation and proof of Hodge’s theory of harmonic
integrals-.

The ergodic theorem. Let us consider A as a symmetric, non-
positive definite operator defined on H H with values in H H.
Let . be the Friedrichs-Freudenthal’s’ self.adjoint, non-positive deft-
nite extension of A A is the adjoint A of A restricted to the domain
D() which is the intersection of the domain D(A) of with the
completion H of H by the new norm II er 11 (er--er, a). If we
consider the diffusion equation

( 1 T,er strong lim T+er--T,a Ta, t 0

with the initial condition
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( 2 ) strong lim Ta a e D(J),

then there exists Tae H such that

(3) strong limTa=Ta and

ZTa 0, (a-Tez, B) 0 for any B H" with J 0.

Supplement. i) If R is closed, then we may take, in (1), J as
the smallest closed extension () of . Moreover, when

.I:T(a--T..a)dt may be considered to belong to H" and(a)

T.oa--a Jo Ta)dt

ii) When R is the euclidean n-space, we may take, in (1), as
the smallest closed extension ()’ of J.

Proof of the ergodic theorem. Since J is self-adjoint with its
spectra lying on the half line (--, 0), we may apply the semi-
group theory). Thus there exists a one-parameter semi-group of
linear operators T (t 0)

(5) strong lim (I-- m-’ tA)-a, a e H,

(I the identity operator)
such that

(6)
and

To I, T T. T,+,, strong lim Ta a for a H, [l Tt II _1
-o

(1) Tz=strong lim T,.+,--T exists only for ez D(./) and

ATa,

(1) Ta-- a nTadt for aeD(g).

Let

( 7 ) ,:1 dE

be the spectral resolution of .. Then, by (5), we have

Hence, by

I! To--T,,o 11 _exp (,t)-exp (,t’) g il E !1
we easily see that
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9 strong lim Ta T. exists and T7’a T.a for e H.

Therefore, by (1), we have

(10) .ATa--0 for eH.
Consider the "distribution ’’’ S(/) (% T), /e Hq Then, by
(10), S satisfies the differential equation in the sense of the
"distribution"

S 0.

Since Z is "elliptic ", there exists’) infinitely differentiable B such
that AN----0 and S("/)=(%B) for every /eH. Hence we may
consider that T.a is in H" and

(10)’ ,:ITa O

Thus we see that

(11) T---Eo--Eo_o, viz. T is the projection operator upon the
closed linear subspace spanned by the solutions H of

= O.

Hence, starting from any a eH, we may obtain its harmonic
part Ta by a stochastic procedure (9). For we have

(12) AN 0 (/ H") implies TB and hence

(a--Ta, )= (a, Z)--(Ta, )= (a, )--(a, T)
(a, Z)--(a, )= O.

The proof of the supplement, i) We have

(18) II (I-,) II II II-(, ) =>-_ II , I!,
Moreover, the range { (I--.l)a, a, a H} is strongly dense
in H. For, if otherwise, there would exist e H such that =4= 0
and ((I--A)a, .)= 0 for every /s H. By the "ellipticity" of the
operator (I--A), we see that ,) may be considered to be infinitely
differentiable. Thus, by (13), ,P must equal to 0, contrary to =4=0.
Hence the resolvent (I--A)-’ exists as a bounded self-adjoint operator
defined on H. We have, from (13),

(14) ]l(I--A)all_l implies llalll and 0--(,/a,a)_l.
By virtue of the compactness of R, we see, by extending F. Rellich’s
argument:), that the resolvent (I--)- is completely continuous.
Hence the spectra of form a discrete set which accumulates only
at --oo. Hence

"- lim , , where P, is(7)’ A=P, 0=
il i-oo

the projection on the closed linear subspace spanned by the
solutions Be H" of AN B-
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Here we have again made use of the "ellipticity" of the operator
(I--). Thus we have

( 8 )’ Tta

_
exp (,t)Pa, H.

By P T, PP, 0 (i = j), we have

T (a--Ta) exp (,t)Pa.

Hence the integral (in the sense of S. Bochner)

converges strongly, when t ? o, to an element T.,a)dt H.
Thus, by (1) and the closure of the operator A, we obtain

I"T(15) Ta-- a a ( Ta)dt for aH"

Since T-- is infinitely differentiable and since the operator
is "elliptic ", T,(a-Ta)d may be considered to be infinitely

differentiable and so we have (4).
ii) It would be sufficient, as above, to prove that the range

{; B (I--m-)a, a ell} is, for m0, strongly dense in H.
Let us assume the contrary. Then there must exist e H such that. 0 and ((I--m-’)a, ) 0 for every ae H. By the "ellipticity"
of the operator (1--m-’), there must exist infinitely differentiable
which satisfies (I--m-’3) 0 and (a, ) (a, ) for every a H.

Such 7 is, in the case of the ordinary Laplacian in the euclidean
n-space (n 2), identically zero, contrary to 0.’)
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