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1. Preliminaries.

We insert here a short chapter concerning the rate of accidental
danger in blood transfusion, especially in case of random selection.
In view of the nature of problem, we concern exclusively the con-
crete human blood types alone. Now, it is one of the most important
applications of blood types to clinical medicine, to make possible to
choose a suitable type of donor in blood transfusion. That the
blood transfusion shows a restoring effect against profuse hemorrhage
of various kinds, has been well verified by many experiences. But,
in order to ward off an accompaniable danger, it is necessary to
choose a suitable donor possessing the blood-corpuscles not aggluti-
nated as well as not dissolved by serum of the receiver. If, in
future, the system of blood transfusion company or blood bank,
where the blood of every type is preserved, will perhaps spread
more wider, then the mistake on choice of suitable donor will be
warded off. But, in an imminent case, it may possibly happen that
there is no time sufficient to examine the blood type.

Let a pair of a donor and a receiver be chosen, one or both of
which have unknown types. Then, at how many rate the danger
will be expected ? In the present chapter, we shall chiefly discuss
the problem in case of ABO blood type. The safe directions of
transfusion fitting for the above-mentioned
postulation may be, as well known, denoted

O

in the scheme.
Besides the postulate mentioned above, A - A/ B- B

it is practically urther desired that the AB/
serum o donor does not agglutinate or
dissolve the blood-corpuscles of receiver. AB

For that purpose, it will be safe to choose a transfused blood ob-
tained, if necessary, by removing anti-A or anti-B agglutinin.
However, we shall not touch here on such a circumstance.

1) In reference to preceding papers, cf. a foot-note of . Komatu, Probability-
theoretic investigations on inheritance. V. Brethren combinations. Proc. Jap.
Acad. :Z7 (1951).
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2. Probability of danger.

We first consider the case where the type o receiver is known.
In case of receiver of type O, donors of any types except O are
unsuitable. Hence, the rate of danger at random choice of donor
then becomes

(2.1) D[O] -A+B+AB--I--O----1--r.
For receiver of type A or B, donors of types B and AB or A and
AB must be avoided, respectively. Hence, the respective rates
danger then become

(2.2) D[A] =B+AB-q(q+ 2r) + 2pq-q(2-q),
(2.3) D[B] =A+AB-p(p+ 2r) + 2pqp(2--p).

Last, for receiver of type AB, donors of any types without ex-
ception being admissible, the rate of danger vanishes, i.e.,

(2.4) D[AB] -0.
Next, suppose that the type oi receiver is also unknown. Then,

at random choice of a pair of a donor and a receiver, the general
rate of danger is evidently given by the expression

D,o-D[O] + DIAl + D[B] +A-D[AB]
(2.5) -r(1--r) + p(p+ 2r)q(2--q) + q(q + 2r)p(2--p)

-r(1--r) + 2pq((1 + r)-pq).

The case where the type of donor alone is known can also be
treated in a similar way as above. If, for a receiver of unknown
type, a donor of type O, A, B or AB is chosen, the respective rate
of danger is then given by

(2.6) [Ol =0,

(2.7) [Al -O+B-r+q(q + 2r) (1-- p),
(2.8) z/[B] =O+ A-----r+ p(p+ 2r) (1-- q),
(2.9) I[AB] --+ +-1-A---1-2pq.

I the type of donor would also be unknown, the general rate
o danger will then be given by the expression

Io=1[0] + A--[A] + B-[B] + AB---[AB]
(2.10) -p(p+2r)(1--p)+q(q+2r)(1--q)+2pq(1--2pq)

--r(1--r) + 2pq((1 + r)--pq).

It is evidently seen from (2.5) and (2.10) that both quantities
and /,o coincide each other identically. This iact is quite a matter
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of course, as immediately understood from their respective defini-
tions.

On the other hand, the results obtained above can easily be
extended to case where donor and receiver belong to different
populations. But, such cases being o2 less practical importance,
the detailed discussions will here be omitted and left to the
reader.

We now consider the Qq blood type, ioe., the subdivided Q
blood type where the gene q is divided into q_ and q/. Here, we
distinguish q_ and q/ characteristically by absence and existence of
the anti-Q agglutinin in the serum, respectively. It is known that
the gene q/ is recessive against q_. Let the 2requencies o genes
Q, q_, q/ be denoted by u, v, v, respectively; that of q is then
v-=v+vo We now consider the problem corresponding to that
treated above in case of ABO blood type. Based upon the nature,
it must be avoided to transfuse the blood the corpuscles of which
contain the Q agglutinin no the blood he serum o which contains
the anti-Q agglutinin, i.e., into the blood o type q/. Hence, using
similar notations as above, we get the rates of danger:

(2.11) D[Q] =D[q_.] =0, D[q+] =Q=u(1 + v)

(2.12) D,q+ =+D[q+l vu(1 + v) (v_-v+ v).

It may be noticed that all the probabilities explicitly discussed
in the present section are expressed merely by frequencies of
phenotypes without bringing out those of genes. For practical use,
it will suffice, for instance, to make use of the first equation in
(2.5), (2.10) and (2.12).

3. Maximizing distribution.

In the preceding section we have derived expliei expressions
for ,he raes of danger in ease of random blood ,ransfusion. We
shall now deermine the disribu*ion of genes for whieh such a
rate aains i,s maximum among all he possible values.

Now, ,he frequencies 1o, q, r of genes in ABO’ blood ype are
no quie independen,, bu there exis,s a unique iden,iy given by

(3.1) p+q+r=l.

In view of this relation, the rate (2.5) can be regarded as a 2unc-
tion of two independent variables p, q and may be denoted by
f(p, q), the range o2 variables being the triangle 0 p, q p+q 1.
We get from (2.5) and (3.1)

(3.2) f(p, q)=r(1--r)+2pq((1 +r)--pq),
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In view of the identity pq=((p+q)--(p-q))/4, the values of the
product pq, for any fixed value of r with 0 r 1, range over
the interval 0 _pq (1-r)2/4, pq being equal to (1-r)2/4 only if

(3.3) p-q=(1-r)/2.

Therefore, for any fixed value of r (0_ r 1), the expression

f(p, q)-=r(1--r) + (1 + r)/2-- 2((1 + r)/2--pq)

attains its maximum for pq=(1--r)/4 and hence for (3.3).
Thus, the problem reduces to maximize the quantity

q(r) ----- f((1--r)/2, (1-r)/2)
(3.4)

r(1-- r) + ((1 + r)- (1--r)/4)(1--r)/2,
the variable r ranging over the interval 0 r 1. Differentiating
this with respect to r, we get

(3.5) 8’(r)-8(d/dr)f((1--r)/2, (1--r)/2)=1--3r+3r--5r.
Since ’(0)=1/8>0 and ’(1)-=--1/20, the quartic (3.4) attains its
maximum at a value of r where the cubic (3.5)vanishes. The
cubic equation ’(r)=0 possesses a unique root ro contained in the
interval 0rl, which is numerically calculated as approximately
equal to

(3.6) ro 0.3865.
The corresponding values of p and q, being denoted by po and qo
respectively, are given by

(3.7) po-=qo=(1--ro)/2.

Since we have (r)=(--1/5+r)’(r)+(7+6r--6r)/20, the maximum
is equal to (r0)=(7 + 6ro--6r)/20 namely

(3.8) (DA,o)max 0.4211.

The maximizing distribution of phenotypes is given by

O-=r-0.1494, A=p+ 2p0r0 0.3312,
(3.9)

B=q+ 2q0ro-0.3312, AB=2poqo=(1--ro)/2-=0.1882.

We next consider the case of Qq blood type. For any fixed
value of u (0 u 1), the quantity

(2.10) Dq=vu(l +v) (V=Vl +v, u +v=l)

may be regarded as a function of a variable v alone ranging over
the interval 0 v v - 1-u, and attains its maximum evidently
at v.=v-=l--u (and hence v=0). The problem thus reduces to
maximize

(a. ) (u) (-u)u(2 u),



58 Y. KOMATU. [Vo|. 28,

the variable u ranging over the interval 0ul. Since this
function can be written in the orm (u)=(1--u)(1--(1--u)), it is
evidently that the maximizing value of u, say uo, is given by
(1-Uo)=1/2, i.e., Uo=1-1/1/2, which implies the maximizing dis-
tribution of genes"

(3.12) uo=l-- 1/-t/-2- =0.2929, vo=0, vo-=l/V 2 =0.7071.

The maximum is then equal to

(Qq+)max._(U0) 1/4 0.25.

The maximizing distribution of phenotypes is quite an extreme one
given by

(3.14) Q=1/2=0.5, q_=0, q/ =1/2=0..


