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5. On Some Problems of Birkhoff.

By Yataro MATUSIMA.

(Comm. by K. KUNUGI, M.J.A., Jan, 12, 1952.)

In this paper we shall deal with problems 65 and 7 in Lattice
Theory by G. Birkhoff® and discuss some axioms of lattices in
connection with the latter problem.

§1. G. D. Birkhoff and G. Birkhoff® have developed a very
brief set of postulates for distributive lattices.

Theorem. Any algebraic system which satisfies the following
postulates for all a, b, ¢ is a distributive lattice with I.

1) ara=a for all a
@y aul=I @2y, Iva=1I
3, a~rlI=a B), I~a=a for some I and all a

(4)1 (Lm(b\/c)‘—" (dﬁb)u(ar\c) (4)2 (b w C) ~Q = (b ~ Cl,) Y (C ~ a).

Problem 65 is to prove or disprove the independence of the
seven identities assumed as postulates in the above theorem.
We shall show that these identities are independent of each other.

I.  Independence of (1)
We consider a system of three sets I= {1, 2,3}, a = {1, 2}, b= {1}.
About their join and meet operations, we take set-theoretical sum
and intersection, except the case: a~a=>b.

For this system we can easily show that the six postulates (2)-
(4) are satisfied but (1) is not. Concerning (4), we have, for instance

x Yy 2 x~(yvz) (@~y) v (@nz)

¢ a a an(fava)=ara=>b, (@~a)u(@~a)=>0bub=">

a a b an(avbd)=ara=b, (@~a)v(@~b)=bub=b.
All other cases are treated similarly. The other identities except
(1) are verified easily.

II.  Independence of (2)

Let © be a family of all subsets of a set % (& does not contain
null set.) Define join and meet operations as follows,

aub=a

a~nb=ab (where ab means set-theoretical intersection of
sets a, b)

1) G. Birkhoff: Lattice Theory, 1948.
2) G.D. Birkhoff and G. Birkhoff: Distributive postulates for systems like
Boolean algebra. Trans. Am. Math. Soc. 60 (1946).
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Then, it is obvious that the postulates (1), (2),, (8) are satisfied
and moreover we have

4), an(®oc)=and, (anbd)v(@ne) =anb

(4)2 (buc)r\a,=br\a,, (br\a)u(cma)=bna,
but, (2), is not satisfied since aul=a>xlI.

Similarly we can prove the independence of (2), by defining
join and meet operations as follows in the system econstructed
above, awb=>0, a~b=ab (where the meaning of ab is the same
as above.)

III. Independence of (3).

In the system & defined in II, we modify the operations of join
and meet as follows:

avb=a+b (set-theoretical sum of sets a, b)

anb=a.

Then we can see the independence of (8), by this system S.
If in € we make another modification: a wb = a +b, (32t-theoretical
sum of sets a, b). a~b=>b, then we have a system which shows
the independence of (8),.

IV. Independence of (4),

In a system of four elements a, b, ¢, I define join and meet
as follows.

join: Iox=xul=1I x=1I, a, b, ¢)
zwy=ywax=1 (x=xy; «, y=a, b, ¢)

rTur=2 (x=a, b, ¢
meet: Inzx=ax~l==z x=1I, a, b, ¢)
TAy=1y (®, y=a, b, )

For this system we can easily show that postulates (1) (2) (8)
are satisfied. We can also prove the validity of (4),: (yvz)~z=
(yox)w(z~x); for instance in case x=y=a, z=b we have
(@ud)~ra=Ira=a, (a~a)v(bra)=ava=a, and other cases
are treated similary. But (4), is not satisfied; indeed we have
anbue)=anl=a, (@~b)o(@a~c)=buc=1I.

We can prove the independence of (4), by defining z~y =2
instead of x~y =1y in the system constructed above.

§2. As is well known identities L1-L4 completely characterize
lattices.

L1 A== and zuva=ux

L2 zxrny=ynrzx and zuvy=yovw

L3 xn(yn)=@~y)~rz and aouyvuz)=(@Eouy)uz

L4 z~(xuy) =2 and xu(zny)= .
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Problem 7 is to investigate the consequences of weakening L1
to x~nx=wxvax and L4 to x~(zvy)=av(@~y). About this
problem we obtain some results. Let L be a system satisfying

L1 TART=xwr==2

L¥4 g~(@oy)=axv(@~y)=a* (independent of y)
and L2, L3. Let us put L= {z; weL}, L*= {a*; weL}, L={%;weL}.
Then we obtain the following results.

I. If ¥ =a* for every we¢ L, then L is a lattice.

In fact we have T~Z=FwZ=a*=7% since T~Ii=@ ~x)~(x~2)
=gn(@n(@rx)=2~(@v (@ 2)=20*% by L*4, and T~y=y~%
since Zng=(@~x)~Y~Y) = @~y)=(y~2x), and moreover % (§~7)
=x~({Ynz)= &~y ~z, and F~(Eoy) = (@)% = ok o* = p¥* = gk =5
since x¥* =g* A (2% U x) =a*~(@*~2) =2~ (r~A)=2*. Similarly we
have the dual relations.

II. L* and L are laitices for any L.

Now we consider a system L satisfying L1, L2, L3, L*4 and
the condition % = a* for any x. Let a, b, c... be distinct elements
of this lattice M = L. If we define C,= {x;  =a}, then C, and
C, have no common elements, and we have xwye C,p, ©~Y€Corp
for ze C,, ye C,. Furthermore if we assume the condition:

M) ao@ouy)=zvy, a~@~Y)=x~Y
then we have zvy=(xvy) y=2vy=2v (@wy)=Toy and x~y=x~Yy
by L2, L3 and (M). Hence we have x~y=a~b, xvy=a-b for
2eC,, yeC, and we see that a system L satisfying L1, L2, L3, L*4
and (M) has the following structure. ((M) implies & = x*).

III. Let M be a lattice. To each element a of M we correspond
an abstract set C, such that the intersection of C, and M consists
of only one element a, and C, and C, have no common elements for
axb. We define as follows:

cny=andb, zuy=aub for zeC,, yeC; (@ =b or a>xb).
Then the set-theoretical sum L of C,, aeM; L=a§_:,wC’,, satisfies L1,
12, L3, L*4 and (M). )

Conversely any system satisfying these five conditions can be
constructed as above.

The fact that (M) is not implied by L1, L2, L3, L*4 is shown
by the following system of elements {a;, b;; %, j =0, 1,2} in which
join and meet of elements are defined as follows: aub=b, a~b=a
and

1) In case z>xy and for z, y=a,b

1) =<y, = @=<y)ia, t=1,2 where ay=a, b=b
i) axy;=(@xy) for ixjJ;4,5=0,1,2
2) ay=xx;=« for ¢Z2j and x=a,b; ,75=0,1,2
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In this system we can easily verify that L1, L2, L3, L*4 are
satisfied, but (M) is not since a,w (@, ub,) =a,uby =b>xa,ob,=0b,.

Remark. (1), L1, L2, L3, (M) and (y) imply L*4, where (r):
xuy =1yvwy implies z~y=x~a and conversely. In fact we have
suy=av(@vwy) =@y v(@oy) by (M), L3, and z~(zwy) =x~w
by (r). Similarly v (x~y)=zvx. Hence we have

z~n(@oy) =xv@~y) by Ll

(2) If we take a closure operation A— A for the subsets A of
an abstract set R and define,

AuB=A+B (set-theoretical sum)
A~B=A-B (set-theoretical intersection),

then we have a concrete example satisfying L1, L2, L3, L*4 and (M).
(8) Any system satisfying the condition («) besides L1, L2, L3,
L*4, (M) is a lattice, where (a): & =y implies x =y. Indeed we
have Z=wazow, & =@~ (Zwy) =~ (@woy).sinee L is a lattice, hence
we have v =axvwa, o =~ (xwy). Similarly we have zu (z~y)=2x.
Hitherto we have assumed that a* is independent of y, we now
treat the following postulates

L'd: x~ (:L'uy) =T (xny)
which is weakening of L*4.

IV. Any system satisfying L1, L2, L3, L'4 is not always &
lattice.

We shall show this fact by the following example.

Let L= {a, b, ¢}, a<b<ec, and define join and meet as usual,
except the case: aub=a~b=0>. In this system we can see that
L1, 12, L3, L'4 are satisfied. However L4 does not hold since
an(@wbd) =anb=b>xa.

V. Any system satisfying L1, L2, L3, L'4, and the condition (a)
18 a lattice, where

(@): z~ny=zwy implies x=y.

Proof. By L1, L'4 we get avi=av(@nz)=a~@va)=2~7.
Hence =1 by (a).

Since zu(@w @ny) =2 @~y =~ @UY) =2~ (@~ (@y) by L'4,
r=%, we have zu(x~y)=2x by (a).

§3. We shall now find some conditions instead of L4 for a
system to be a lattice besides L2, L3.

1. A system satisfying any one of the following class of condi-
tions besides L2, L3 is a latiice,

1 (L1, (M), (%)

@) (L'4, (M), (1))

B ([L'4, M)y ()5 zwa=2)

(4) (L'4, (M), (B))
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where

(M)1: mu(muy)=xuy

M): z~n@ny)=2 Yy

M*: xzoy=yvoy implies z~y=2a and conversely
(1i: woy=yovy implies zry=uzx

NF: wrny== implies zvy=yvy

Bn: wry== implies 2wy =y.

Proof. (1) By L3, (M), we have zu(zvy)=@vwy) v (xvwy),
and hence z~(@xvy)=2a () by ().

From azva=zoz, we get x~zx=g (ii) by ().
By L3, (ii), z~y=a~(@~y),

then azv(xry)=ova @) by (r)F, L2.

Hence we have wzou (x~y) =2 by (ii), (iii), L1.

(8) Since z~(x~y)=x~y by (M),, then by (), L2,
xx~ryyvr=avzx. By L'4 z~(xwy)=avx, and we have I4
from the condition & v« = . The proof for (2) and (4) are omitted.

Remark. L'4, (M), ()i besides L2, L3 imply ()i, (M)..
Indeed, if 2~y =22 then we have yozxz=yo (@ ~y)=yv(ya)
by L2. On the other hand yu(y~a) =yvy, for x~(xvy) =2 by
(M), L3, (r)f, then zu (x~(xvy)=xvz. By L'4, (M), xw (x~(xwy))
=gu(@v(@ny)=xv (@ y), hence we have zv(xry)=zv .
Accordingly we have yu (y~x) =y y. Hence we get (7). (M),
is trivial. However (yr)f, (M), will not be implied by L’4, (M),,
(s, L2, L3.

II. The four identities L2, L3, (M), (B) characterize a lattice,
where
(#): «xvy=y implies x~y=2a and conversely,
M): zv@vy)=avy, zTA@nY)=x~Y.
Proof. By (M), v (@vwy)=avwy
hence we get z2~n@oy)=a by H).
Similarly we have zv (x~y)=2 by (B), (M).
Now we shall prove the independence of these identities.

(1) We shall show the interesting example for the indpendence
of (M). Let r={0,2,8,-.-} and define join and meet as follows.

aub=a+b, a~c=ab (arithmetical sum and product)
In this system L2, L3 is trivial. It is easily shown that (#) is not
satisfied. Concerning (5), we have

a+b=b22a=02ab=a since bxl.

(2) We can see that the independence of (f) is obtained by the

same example as in IV of §2.
(8) Independence of L2.
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We consider two isomorphic lattices K, K’, and define join and meet
of elements between K and K’ as follows.

axb =ax<b, b'=<a=(0=<a) for a,beK; a’,b €K,
where the elements a, b, --- of K corresponds to a’, b’, -+- of K'.
In this system L2 does not hold, since a ub’'=avub, b’ va= (v a)
= (avb). However L3, (M) hold. The validity of (f) is evident
ginee the relation x oy =1y holds only for 2,y K or x,ycK'.

(4) Independence of L3

Let L={a,b,c, I}, a<b<e<I and define join and meet as
usual, except the following case: aub=bua=1I. Then we can
prove the validity of L2, (M), (8) in this system. However L3 is
not satisfied since av(bvwc)=avc=c, (awb)vec=Ivec=1I.



