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Let M be a ring of operators in a Hilbert space H in the
sense of J. yon Neumann [3], and denote the center of M by Mo
Recently J. Dixmier has proved the following theorem [1; Theorems
10 and 11]"

Theorem of Dixmier. If M is of finite class, then there exists
a mapping A -- A of M on M possessing the following properties

(1) If A M, A A,
(2) ( A) Aq,
(3) (A+B)q-Aq+Bq,

(aa) (AB) (BA),
(4fl) (AB) AB if A e M,
(Sa) If A M. and A

_
O, then A e M. and A 0,

(5/) If A e M, A O and A 0, then A O,
(6) (A*) (A)*.

Furthermore, if there exists a mapping A(A) of M on
M with the properties (1) (2) (3) (4a) and (5a), then (A)--A for
all A M.

The present paper is a continuation of the one of Dixmier [1],
and our object is to generalise he notion of his -operation for the
rings of operators o infinite classes. If M is a factor, our results
include the one of Neumann [4].

We shall use the usual definitions and notations in the theory
of rings of operators without any explanation, and the results of
Dixmier will be assumed. The reader is reffered to [1] or [3].

1. Following [1] and [3], we shall say that a projection E e M
is finite if, or any projection F e M E F, F E implies F=E,
and infinite if this is not the case. I the unit element I is finite,
then we say M is of finite class, and otherwise M is of infinite
class.

Consider those operators A e M which are permutable with a
projection E M and form their parts in E, A(). Denote the set
of all those A()(Ae M, and permutable with E) by M(). We
say A e M is contained in E if AE-EA=A. Then obviously M()
is a ring of operators in EH and (M())q-(Mq)() [3; Lemmas 11.
3. 2 and 11. 3. 4].
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By the Dixmier theorem, there exists a mapping A-+ A’ of
M() on MI for any finite projection E e M. We now consider to
construct the mapping A-+ A of M() in M with the conditions
()--(6).

By central envelope o a projection E e M we mean the least
central projection containing E and denote it by Zo This notion is
equivalent to the [E] o Dixmier, therefore Z is the least upper
bound of F, which are equivalen to Eo

Lemma 1. There exists a one-to-one mapping 6) of Mz onto
M which has the following properties"

(1) If A eM, (EA) A,
(2) 0 is an algebraic ring-isomorphism,
(3) If A is self-adjoint and A

_
O, then (A) is self-adjoint

and O(A)

_
O,

(4) 0 is an isometry.
Proof. First we remark that for any projection P e M(z)

EP----O implies P=0. In fact, EP=O implies EZ--P e MzM,
hence P=0 by the definition of Z. Therefore there exists a one-
to-one correspondence between the projections in M and Mz.

I M(),Denote this by . If we define, or any A dP in

0 (A) i d 0 (P), then we obtain the required 0.

Let a projection E e M be finite We shall define the operation
by

A 0 (A)
2or any AeM contained in Eo Then by the properties of A
and 0 we obtain the 2ollowing

Theorem 1. There exists a mapping A --+ A in M satisfying
the conditions (2) (3) (4a) (4fl) (5a) (5fl) (6), and this mapping is
locally uniformly continuous.

Remark. It is easily seen that the finite central projections
have the maximal one, therefore M is decomposed into the direct
sum oi three rings oi olerators, M, M and M, say; M is of
finite class, M is the one, in which every central projection is
infinite, but there exists a finite projection, and M is in the other
case. We say M is of the purely ifinie class. The first case is
reduced to the Dixmier theorem and in the third case our method
is not available. Therefore we shall discuss only the second case
(except for the last section). In this case it is known that A
cannot be defined 2or A e M [1; Theorem 14], so the condition (1)
is vacuous.

2. The above obtained -operation depends on E. We shall
next study this point. First we note the relation between Aq
and A of the finite class.
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Lemma 2. Let M be of finite class. If E e ]VI be any projec-
tion and Z denotes its central envelope, then Range (Eq)=Z and
E has an inverse (E)- in MIz.

Proof. By [1; Lemmas 4.10. and 6.4], E can be written in
the orm E =-P, where P are mutually orthogonal and

simple (c2 [1; Definition 4.2]). The S-operation is strongly continuous

in the unit sphere [1; Theorem 17], hence Eq-- P-= Iz,
where Z is the central envelope of P [1; Theorem 10 (7)]. There-
ore Range (Eq)

__
Z is clear. Let us prove the inverse implication.

It is sufficient to prove that ior any finite subset J o I we have
Range ( Z)_c__: Z. It ollows easily by Lemma 6.6 ot [1].

The existence ot (Eq)- is evident if we remark that M) can
be represented by the space of continuous unctions.

Theorem 2. Let M be of finite class, and A M be contained
in a projection E. Then we have

A" E ((E)- A)
or A (E)-A

where A is the one given by the Dixmier theorem,

Proof. The existence of (E)- in Mz) was shown in Lmema
2, and A is contained in M, heace the above expression has the
meaning. Now E ((E)-IA) belong to Mz and satisfy all the pro-

M(, then it has theperties of the -operationo Because ii A e
orm A-=EB, B e M, therefore A=EB, and E ((E)-A)--EB-----A,
therefore condition (1) is satisfied, and he other conditions are
evident. Hence by the unicity o2 the -operation we obtain the
result.

:. If projections E, F e M be finite, then it is well-known
that P--=E F is also finite (for example, cf. [2; theorem 6.2]). If
A is contained in E F, then we can define A, A" and A. We
shall study the relations between them.

Lemma :. Let a projection P e M is finite and A M is con-
tained in E

_
P, then the above A and AP is related by

A EA
Proof. We consider the central envelopes Z and Z. As E

M(e, we consider also the central envelope Z,e of E in M(e., and 0a, e denote the mappings analogous to the construct-
ed in lemma 1, that is, 0, is a mapping from M to
from M to M(zp and , from M to Mz,p. Then we
obtain from the theorem 2,
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A OE’O,eOtA
EOO,(E (PA))
E 0 (PA ) E A

Theorem 3. Let the ojections E, F M be finite. If A M
is contained in E F, we can define A and A. Then we have

A (F)-EA
where B is defined by any finite projection PM containing E
and F.

Espeeially, if E F, then we obtain A A.
ProoL Evident from Lemma 3 and the fact that the ave

expression has the meaning, because A, A are contained in the
central envelope of E F.

4. We shall extend the notion of the -operation of Theorem
1. Let a projection E M be finite, then any projection P
can be written in the following form"

1 P= P, where P are mutually orthogonal and P E,
or

2 P P where P are mutually orthogonal and P E,

in some way.
In the case 2, we shall say P is E-finite. Generally if A M

is contained in some E-finite projection, then we shall say A is
E-finite. If we define P for any E-finite projection P by

and for any E-finite A . dP
A dP

then we obtain the A for any E-finite A M.
Now we shall consider the arbitrary ring of operators M. As

we remarked above, M is a direct sum of M, M and M. If the
projectiom E, FM be non-comparable, then the central envelopes
Zz and Zr are mutually orthogonal. Therefore, for some system
of mutually non-comparable finite projections E M, the corres-
ponding central envelopes span the unit element I of M. And
any finite projection in M is a direct sum of a projection in
and some E-finite projection. If A is contained in some finite
projection, we shall say A is finite. For any finite A M we can
define a -operation by a sum of At) and A Then we obtain
our final

Theorem 4. Leg M be a ring of operators. For any finite A
M, we can define a mapng A M satisfying the all required

properties.
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If we define the A1 by another system Fa, and if Z and
have a comparable part, then it is related by Theorem 3 in that part.

Proof. The first part is obvious.
If Z and Za have a comparable part, then there exist E:

E and F Fa such that E F is not empty. By this fact and
the above described definition of A Aa, we can apply the theorem
3 for any finite A contained in Z and Za.
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Added in proof. The statesments of 4 are not complete.
This part will be discussed in detail in a next paper.


