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17. Note on Dirichlet Series (IX).
Remarks on J. J. Gergen-S. Mandelbrojt’s Theorems.

By Chuji TANAKA.

Mathematical Institute, Waseda University, Tokyo.
(Comm. by Z. SUETUNA, M.J.A., Feb. 12, 1952.)

(1) Introduction. Let us put
1.1) F(s)=§1anexp(-a,,s) (s=c+it, 0 <A< Auso <Ay—> o).

If (1.1) is simply convergent in the whole plane, then (1.1) defines
an integral function. Now we shall begin with

Definition. Let (1.1) be simply convergent in the whole plane.
Suppose that (1.1) assumes every value, except perhaps two (co in-
cluded), infinitely many times, in any angular domain : | arg (s—8,)—
0| < e, where s,: fived point, ¢: any positive number. Then arg (s—
80)=0 is called Julia’s direction with respect to s,. For brevity, we
denote it by J (s, : 0)-direction.

In the last part of their interesting note ([1] theorems V-VII),
J. J. Gergen-S. Mandelbrojt established the existence of J (0 :6)-
directions under some assumptions. In this note, we shall prove the
existence of J (s, : §)-directions under hypotheses somewhat different
from their ones.

(2) Theorem I. In this section, we shall prove

Theorem I. Let (1.1) be simply convergent in the whole plane,
and not be a constant. Then, for any given point s,=ao,+it,, there exist
two J (8y: = r[2)-directions, provided that (1.1) is uniformly convergent
for ay—a <o, where a: sufficiently small positive constant.

From this theorem immediately follows

Corollary. Let (1.1) be uniformly convergent in the whole plane,
and not be a constant. Then, for 'any given point s, there exist two
J(8y : £n/2)-directions.

Formerly the author proved this corollary under the absolute
convergence in the whole plane, but recently Prof. A. Wintner kindly
remarked to him that this corollary is valid.

In order to establish theorem 1, we need some lemmas.

Lemma I. (H. Bohr, [2] p. 49) If (1.1) is uniformly convergent
Jor o, <o, then to any bounded domain A interior to this half-plane,
and to any given ¢(>0), corresponds a sequence of numbers {t,} such
that, for any s contained in A we have

| F (s+it,)—F (s)|<e (p==1, =2,...),
where
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Hm (=) >0, T e,l/p<+oo.
petew p=too

Lemma II. Under the hypotheses of Theorem 1, for any given
e (>0), (1.1) is unbounded in =2 <|arg(s—s) | < n/2+e.

Proof. We shall show that, in z/2<arg(s—s)) < 7/2+¢, (1.1) 18
unbounded. The unboundedness in —=z/2 > arg (s—s;) > —(7/2+¢) i
similarly established. It is sufficient to show that the boundedness
in 7/2 <arg(s—s,) < 7/2+e¢ ascertains the boundedness in the whole
plane, because by Liouville’s well-known theorem, (1.1) reduces to
a constant, which contradicts the hypotheses. For its purpose, it
further suffices to prove the uniform boundedness in the circle C:
|s—s,| < R, where R is an arbitrary large number.

Sinece F'(s) is evidently bounded for s,—a <o, there exists a
constant K such that

2.1) |F(s)I<K for —n2<arg(s—s)=<m/2+¢c.

Putting A:|s—s,)| <r<a, e=e,(e;>e,>.. >, —0), in Lemma 1, we
can conclude that there exists a sequence {r,,} such that

(2.2) |F (s+irp,)—F(s)| <e, for s contained in A, where 7, <7,,<

oo <1y < e+ 0. Setting F, (s)=F (s+1it,,), by (2.2) F,(s) tends
uniformly to F'(s) in A. On the other hand, for a sufficiently large
n>N(R), we have easily | F,(s)|<K in C. Hence, by Vitali’s well-
known theorem F', (s) also tends uniformly to F'(s) in C, so that we
have evidently | F (s)|<K in C, which is to be proved.

Proof of Theorem I. By Lemma 2, for any given ¢(>0), F'(s)
is unbounded in D (e): 7/2<arg (s—s,) < 7/2+e. Hence there exists
evidently a sequence {S,} (rn=1, 2, ...) such that

(2.8) {(i) Sp€D(e), [SI<IS<ISs <o <ISu| >+ o0
() |F(S) =+ as n— +o.

Now let us consider the function-family F (s)=F (s,+2*(s—s,)) in
D: 12<|s—8|<1, |arg(s—s)—n/2|=Ze.

By (2.3) we can easily find two sequences {k,} (integers), {s,} such
that

@4y () Smat2ieos), 5D,
' (i) |Fi(s2)|=|F(Sp)| >+ a8 n—>+oo.

On the other hand, on account of the uniform convergence of F'(s)
in 6,—a <o, there exists a constant K such that

(2.5) |F.(8)| < K for seD, n[2=arg(s—8) =mn[2—c¢.
Then, the function-family {F(s)} is not normal in
D': 1/2-6<|s—8|<1+4 (6>0), |arg (s—s)—n(2]|< 2.
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In fact, by (2.4), (2.5), any partial sequence of {F,(s)} neither tends
uniformly to « in D’, nor tends uniformly to a finite analytic funec-
tion, so that {F(s)} is not normal in D’. Hence there exists at
least one not-normal point in D’. Thus, in |arg (s—s,) —7/2|<2¢, F
(s) assumes every value, except perhaps two (« included), infinitely
many times. Sinece ¢ is arbitrary, arg(s—s,)=n/2 is J(s;:+7/2)-
direction. By the similar arguments arg (s—s,)= —=x/2 is J(s,:—n/2)-
direction.
(8) Theorem II. Here we shall generalize Theorem 1 as follows:

Theorem II. Let (1.1) be simply convergent in the whole plane,
and not be a constant. Then, for any given point s,=a,+ it,, there exist
two J (s, £7/2)-directions, provided that (1.1) is uniformly bounded
Sor ay—a < o, where a: sufficiently small positive constant.

Theorem 1 immediately follows from Theorem 2. For its proof,
we need

Lemma III. In Lemma 1, the uniform convergence of (1.1) for
6o < o can be replaced by the uniform boundedness of (1.1) for ¢y =o.

Proof. Since A is interior to the half-plane o,=<os, we can
choose a sufficiently small positive constant ¢’ such that A is con.

tained in o,+¢' <o. Then, by the well-known theorem ([2] p. 11,
XI), we have

3.1) F(s) =A5‘_<, @, exp (—1,8) (1—exp (A,—u))*+0(exp (—ou))

uniformly with respect to s contained in A, where k: positive integer,
oy+e <o, 0>0. Hence, we get
(3.2) F(s)=lim 3 a,exp(—4,8) (1—exp (1,—u))*
u->+o0 Apu
uniformly with respect to s contained in A. On the other hand,
S a,exp(—Ai,s) (1—expii,—u))* is an analytic and almost periodic
An<u

function of s, so that by (3.2) and H. Bohr’s theorems, F'(s) is also

an analytic and almost periodic function of s in A. Hence, from

the almost-periodicity of F'(s) in A, we can conclude the existence

of the sequence of {r,} satisfying the same properties as Lemma 1.
q.e.d.

On account of Lemma 3, under the hypotheses of Theorem 2,
Lemma 2 is also valid. Hence, by the entirely similar arguments
as Theorem 1, Theorem 2 can be established.

(4) Remark. If we assume only the simple convergence of (1.1)
in the whole plane, then what we can say about the existence of
Julia’s directions? Concerning this problem, we can prove

Theorem III. Let (1.1) be simply convergent in the whole plane,
and not be a constant. Then, for any given point S, there ewists at
least one J (s, : 0)-direction with |0—n| < n[2.
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Its proof is trivial: Since (1.1) represents an integral function,
there exists at least one Julia’s direction. On the other hand, (1.1)
is uniformly convergent in |arg(s—s))| << a<n/2 ([2]p.2), so that
(1.1) is evidently uniformly bounded in this angular domain. Hence,
Julia’s direction can not exist in |arg (s—s,) |<zn/2, which is to be
proved.
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