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59. Probability.theoretlc Investigations on Inheritance.
Xx. Non.Paternity Concerning Mother.Child.Child

Combinations.

By Yfisaku KOMATU.
Department of Mathematics, Tokyo Institute of Technology and

Department of Legal Medicine, Tokyo Medical and Dental University.

(Comm. by T. FURUgATA, M.J.A.., May 13, 1952.)

1. Non.paternity against a distinguished child.

Problems discussed in the preceding chapter have exclusively
concerned two children belonging to the same family, that is, posses-
sing a father also in common. There arise analogous problems
concerning two children possessing a mother alone in common, which
will be discussed in the present chapter. While the former problems
have depended on mother-children combinations, the latter ones
depend on mother-child-child combinations.

Now, consider a riple consisting of a mother A,, her first
child A and her second child Azq, both children being assumed not
to possess a common iaher. The probability of an event that such
a triple appears and then a man chosen at random can assert his
non-paternity against second child at any rate is, corresponding to
a former expression (2.3) of IX, represented by

(1.1) Po(ij; hk, fg)zro(ij; hk, fg) V(ij; fg);

the =0’s denoting the probabilities of mother-child-child combination
defined in (5.9) of IV and V’s the quantities introduced in (2.1) of
VII, This is a basic quantity and can, in view of (5.7) of IV and
(2.2) of VII, i.e.,

0(i3"; hk, fg)=(ij; hk)r(ij;fg)/A, (/j;fg) V(ij;fg)=P(ij;fg),

be expressed also in the form

(1.2) Po(ij; hk, fg)-- P(ij fg) u(ij hk)
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the coefficient of P(ij;fg) in the right-hand side being nothing but
the quantity noticed in (1.27) of IV, the fact which also implies
immediately the relation (1.2) itself.

The coefficient in consideration being independent of the type
of second child, the partial sum

(1.3) Io(ij; hk) Po(ij; hk, fg),

which denotes the quantity corresponding to (2.5) of VII in the
preceding case, can easily be determined. In fact, making use of
the notation introduced in (2.3) of VII, we get an expression

(1.4) lo(ij; hk)=P(ij):r(ij; hk)/A.
If we sum up the last relations over all the possible pairs of suffices
h and k, we then obtain

(1.5) , Io(ij; hk)=P(ij)

here use being made of an evident relation (1.20) of IV, i.e.,,_, r(ij;hk)-,. If we further sum up the relations (1.5) over
i and j, the whole probability (2.20) of VII will be reproduced (cf.
also (2.19) of VIII and L in (4.33) below), namely,

(1.6) /0 -- l(ij; hk)=l-2S,+S-2S+2S+3SS-3S=P.
Generalization of the above discussion to the mixed case is also

immediate. We shall assume here that a putative father belongs
to the same population as a true father. In general, given a
quantity X dependent on {p,}, let the quantity obtained from X by
replacing all the p,(i=l, ..., m) by the corresponding p,’ be denoted
by [X]". Then, the quantity

(1.7) V"(ij;fg)---[ V(ij;fg)]"
represents the probability of an event that, given a second child

A produced by a mother A, beIonging ,o a poplulation with
distribution {p,} and by a father belonging ,o a population with
distribution {p,}, a man belonging to the same population as a
true father can assert his non-paternity. Thus we now get, instead
of (1.1), a basic quantity

(1.8) P*(ij; hk, fg)--:r*(ij; hk, fg) V" (/j; fg),
the =*’s being introduced in (5.6) of IV; here a father of first child
is assumed to belong to a population with distribution {p}. Hence,
we get, corresponding to (1.2),

(1.9) P*(/j; hlc, fg) " ""=P (v,fg)r (ij; hk)/A, r’(ij, hk) [P(ij;fg)/A,]".
Thus, the relations corresponding to (1.3), (1.4); (1.5), (1.6) will become

(1.10) I*(ij; hk)
_

P(ij; hk, fg)=P"(ij):r’(ij; hk)/A,;

(1.11) l*(ij; hk)=P"(ij) - P"(ij; fg)=p,p[P(ij)/p,p]",

(1.12) I*-P",
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respectively, P" denoting the expression obtained from (4.12) of VII
by replacing the p"s by the corresponding p"’s.

2. Non.paternity against both children.

In discussion of the preceding section, it has been quite indif-
ferent whether a man putative against second child is or is not a
true father of the first child. We now consider a problem of
determining the probability of proving non-paternity against both
children of a mother-child-child combination. Given such a combi-
nation (A; A, A), the probability of an event that a man chosen
at random can assert his non-paternity against both children is
represented by

(2.1) Qo(ij; hk, fg) =0(ij; hk, fg) V(ij; hk,fg);
the uo’s and the V’s being of the same meaning as in (5.9)
and (4.1)of IX, respectively. The partial sum

(2.2)

corresponding to
also in the form

(2.3)

of IV

Jo(ij hk)= Qo(ij hk,fg),
(1.3), can be represented, in view of (5.7) of IV,

Jo(ij; hk)= zr(ijhk) zr(ij;fg) V(ij; hk, fg).

The values of (2.2) can, in separate cases, explicitly determined
as follows-

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

Jo(ii; ii)=Qo(ii; ii, ii) + E Qo(ii; ii, ik)

p(1 2S+S-2(1 S)p, +3p-ap),

Jo(ij, ii) =qo(ij ii, ii) + Qo(ij ii, jj) + Qo(ij ii, ij)

+ (Qo(ij; ii, ik) + Qo(ij; ii, jk))

p,p(1-2S2 +S-2(1-S)p, +3p p,,p
--3p+ pp(p+p)) (i=j),

Jo(ij ij)= Qo(ij ij, ii) + Qo(ij ij, jj) + Qo(ij ij, ij)
+ Z (Q0(/J; ij, ik) + Q0(ij; ij, jk))

--pp(p, + p)(1--2S+S-2(1-S) (p, + p) + a(p+ p)
/2pp-a(p+ p)- 2pp(p+ p)) (i--j),
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These relations (2.4) to (2.8) correspond to (4.13)
IX, respectively. Corresponding o (4.18) to (4.22) of
the following results:

to (4.17) of
IX, we get

(2.9)

(2.11)

(2.12)

(2.18)

E Jo(ii; ii)=S-2S-2SS+3S+S/2SS-3S,

’ (Jo(ij; ii) / Jo(ij;jj))=S-3S-2S/5S
+ 4S.S 5S- S-SS+S,

’ Jo(ij; ij)=S-3S-4S+7S+ IOSS-llS
+2S S-9SS+ 10S,

’ (Jo(ij; ih)+Jo(ij;jh))=l-7S + 10S+8SI-11S
7SS+5S-S-2SS+ 4S.

The sum of (2.9) and (2.10) yields the partial sum of probabili-
ties of proving non-paternity against both children of a mother-
child-child combination over homozygotic mothers:

(2.14) S(1-4S+4S+2S-3S),

while the sum of (2.11) to (2.13) yields that over heterozygotic
mothers:

9 31(2.15) 1 5S+4S+2S+S+7SS 11S+2S-S-12SS+ :S.
The sum of the last two expressions (2.14)and’ (2.15)represents the
whole probability of proving non-paternity against both children of a
mother-child-child combination, stating

(2.16) J0-l--4S+4S-2S,+S+ llSSa--llS
+4S-S 15SS+S.

In case of MN blood type which may be regarded as a special
case of general development, the whole probability becomes briefly

(2.17) Jon--st(2--8st).

The case where recessive genes are existent and phenotypes
alone are available for judgement can also, in principle, quite
similarly be treated. For instance, we obtain the following ex-
pressions for whole probabilities in various blood types"

(2.18)

(2.19)

(2.20)

Jo.o=p(1--p) + q(1--q)’ + 1/2pqr(1 + 7r),

Joe u

Jo--=uv + (2u+ Vl)V,Vl
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The results obtained hitherto in the present section can be
generalized to mixed case. But, the detail will be left to the reader.

By comparing the probabilities J’s in (2.18), (2.19), (2.20)with
the corresponding probabilities J’s in (4.26), (4.27), (4.28) of IX
respectively, we know that the inequalities

(2.21) Jo,o J,o Joq

_
J Jo Jq

hold good, with inequality sign except trivial distributions.
we can erify (2.21) as follows"

In fact,

J,o--Jo,o=1/2p(1-p)/ 1/2q(1-q)/ pqr(2/ r--7r)
-p(q/ r) / q(p/ r) / 1/4pqr(2 / r 7r)
.p.5qr / q.5pr / 1/4pqr(2 / r 7r)
-{pqr(2/ r/ 13r) 0,

J--Jo-1/2uv__O, Jqq--Joq=1/2(u(v-vv)/vv)O.

Comparison of (2.17) with (8.1) of IX shows

(2.22) Jo J;

equality sign being exclusive unless st-----0. In fact, remembering
0 s

__
1/4, we have

J--J0 1/4st(1 2st)(2- 3s0 :> 0.

An analogous inequality between (2.16) and (4.25) of IX, i.e.,

(2.23) Jo J

does hold also good. We can conclude moreover that the correspond-
ing inequalities between (2.14) and (4.23) of IX and between (2.15)
and (4.24) of IX are also valid. For instance, the difference of
(2.14) and (4.23) of IX becomes, in fact,

=s(s--s+s)=s E E pp(z-p-p) o.
=1

The difference of (2.15) and (4.24) of IX can, though somewhat
troublesome in calculation, be estimated in a similar way.

In conclusion, we remark that the whole probability of proving
non-paternity agait a distinguished child alone is given by

(2.24)
-Jo=2S-3S+S-8SS+8S

9--4S+S+15SS .S
and that tha agait at least one child by

J0210-Jo=-2S 2S+3S-5SS+5S
(2.25)

-4S+Si+15SS-S;
el. (6.3) and (7.1) of IX.

--To be continued--


