74. On a Theorem of K. Yosida.

By F. V. Atkinson.
University College, Ibadan, Nigeria.
(Comm. by Z. Suetuna, m.J.A., July 12, 1952.)

1. A topic in the theory of partial differential equations which has received attention of recent years is the question of the behaviour at infinity of solutions which satisfy a null condition on the interior boundary of an infinite region, but which do not vanish identically. For the ordinary wave-equation we have the radiation condition of Sommerfeld, with its electromagnetic analogue. Analogous results have also been established for parabolic equations. Recently K. Yosida (Proc. Japan Acad., 27, 214-215 (1951)) has considered the equation

$$
\begin{equation*}
\Delta h(x)=m(x) h(x) \tag{1}
\end{equation*}
$$

in a region R which is a connected domain with smooth boundaries ∂R in an n-dimensional Euclidean space R_{n}, where $n \geqq 2$. Furthermore in $R m(x)$ is to be continuous and have a positive lower bound m, and ∂R is to lie entirely in the bounded part of R_{n}. Yosida's theorem then states that if $h(x)$ satisfies the internal boundary condition

$$
\begin{equation*}
\partial h / \partial n=0 \text { on } \partial R \tag{2}
\end{equation*}
$$

and the order relation at infinity

$$
\begin{equation*}
h(x)=O(\exp (\alpha r)), \text { where } \alpha \sqrt{2}<\sqrt{m} \tag{3}
\end{equation*}
$$

then $h(x)$ must vanish identically. Here I use r (in place of Yosida's $|x|)$ to denote the distance from the origin of coordinates.

The aim of this note is to show the condition (3) may, by a slight modification of Yosida's argument, be replaced by what seems to be a best possible result in this direction. Consider namely the special case in which $n=3, m(x)=k^{2}$ where k is a positive constant, and in which ∂R is a sphere, centre the origin. We then have the spherically symmetric solutions

$$
k(x)=r^{-1} \exp (\pm k r)
$$

of which a non-trivial linear combination may be formed so as to satisfy (2). The mildest condition of the type of (3) which will exclude such solutions is

$$
h(x)=o\left(r^{-1} \exp (k r)\right)
$$

which is of course weaker than (3).
This example suggests that in the general case the condition (3) may be replaced by

$$
\begin{equation*}
h(x)=o\left(r^{-(1 / 2)(n-1)} \exp (r \sqrt{m})\right), \tag{4}
\end{equation*}
$$

and it is this that I prove in this paper.
2. It will be sufficient to consider the case in which R extends to infinity. As in Yosida's argument, let K_{r} denote a sphere, centre the origin, of radius r so large that K_{r} contains ∂R entirely. Let D_{r} denote the region between K_{r} and ∂R, and let ∂K_{r} denote the boundary of K_{r}. Let further $\partial h / \partial r$ denote the radial derivative of $h(x)$, in the sense of r increasing. Green's integral theorem then gives (here $d v$ denotes the volume element, $d S$ the surface element)

$$
\int_{D_{r}}\left(h \Delta h+|\operatorname{grad} h|^{2}\right) d v=\int_{\partial \bar{K}_{r}} h \partial h \mid \partial r d S .
$$

We have here

$$
h \Delta h=h^{2} m(x) \geqq h^{2} m,
$$

and also

$$
|\operatorname{grad} h|^{2} \geqq(\partial h / \partial r)^{2},
$$

so that

$$
\begin{equation*}
\int_{D_{r}}\left(m h^{2}+(\partial h / \partial r)^{2} d v \leqq \int_{\partial \mathbb{K}_{r}} h \partial h / \partial r d S .\right. \tag{5}
\end{equation*}
$$

Furthermore

$$
h \partial h / \partial r \leqq \frac{1}{2}\left(h^{2} \sqrt{m}+(\partial h / \partial r)^{2} / \sqrt{m}\right),
$$

and hence

$$
\begin{equation*}
\int_{D_{r}}\left(m h^{2}+(\partial h / \partial r)^{2}\right) d v \leqq \frac{1}{2 \sqrt{m}} \int_{\partial K_{r}}\left(m h^{2}+(\partial h / \partial r)^{2}\right) d S . \tag{6}
\end{equation*}
$$

If then we define

$$
J(r)=\int_{D_{r}}\left(m h^{2}+(\partial h / \partial r)^{2}\right) d v,
$$

the result (6) states that

$$
J(r) \leqq \frac{1}{2 \sqrt{m}} J^{\prime}(r) .
$$

It follows that the function

$$
J(r) e^{-2 r / \sqrt{m}}
$$

is a non-decreasing function of r, and hence, if $h(x)$ does not vanish identically, there will be a positive constant A such that

$$
J(r) \geqq A e^{2 r \sqrt{m}}
$$

for sufficiently large r.
It now follows from (5) that

$$
\begin{equation*}
\int_{\partial K_{r}} h \partial h / \partial r d S \geqq A e^{2 r r_{\bar{m}}} \tag{7}
\end{equation*}
$$

Following Yosida we define also

$$
F(r)=\int_{D_{r}} h^{2} d v
$$

so that

$$
\begin{aligned}
& F^{\prime}(r)=\int_{\partial \bar{K}_{r}} h^{2} d S \\
& F^{\prime \prime}(r)=\int_{\partial \bar{K}_{r}} 2 h \partial h / \partial r d S+\int_{\partial K_{r}} h^{2} d(d S) / d r \geq 2 \int h \partial h / \partial r d S
\end{aligned}
$$

whence, by (7),

$$
F^{\prime \prime}(r) \geqq 2 A e^{2 r / \sqrt{m}}
$$

Integrating twice over (r_{o}, r), where r_{o} is some suitably large number, we derive

$$
F(r) \geqq \frac{A}{2 m} e^{2 r / m}+B r+C
$$

where B, C are constants. Now if $h(x)$ does not vanish identically, A will be positive and the exponential term will predominate, so that for large r we shall have

$$
\begin{equation*}
F(r) \geqq A^{\prime} e^{2 r \sqrt{m}}, \tag{8}
\end{equation*}
$$

where A^{\prime} is some positive constant.
We show that (8) is incompatible with (4). Let r_{1} be taken so large that $\partial K_{r_{1}}$ encloses ∂R, and let $r>r_{1}$. Then

$$
F(r)-F\left(r_{1}\right)=\int_{D_{r}-D_{r_{1}}} h^{2} d v .
$$

Splitting the latter integral up into elementary hyperspherical shells, and using (4) and the fact that

$$
\int_{K_{r}} d S=O\left(r^{n-1}\right)
$$

we derive

$$
F(r) \quad F\left(r_{1}\right)=\int_{r_{1}}^{r} o(\exp (r \sqrt{ })) d r=o(\exp (r \sqrt{m})),
$$

which becomes contradictory with (8) as $r \rightarrow \infty$. This proves the result of the paper.

