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1. Supplementary remarks.
Similarly as remarked in 6 of XV, the whole probability (2.15)

may also be regarded as the probability of an event that, two
mothers and their two children being presented, the decision is
possible.

An inequality correspondiny o (6.1) of XV is valid here also:
(3.1) Fo , i.e.

the reason being quite the same as there.
We shall now compare the probabilities derived in the preced-

ing section with the corresponding ones, previously obtained in 5
of XV. If the detection o interchange is possible with reference
to both pairs of mother-child combinations; it is of course possible
with reference to both triples o mating-child combinations. Hence,
we conclude an inequality

(3.2) Go(ij)Fo(ij) (i j).
This inequality can also be verified directly by mesns of ex-

plicit expressions of its both sides. Namely, making use of (5.27)
and (5.28) of XV and (2.3) and (2.4), we see that

Go(ii) Fo(ii) --p(2(1 2S +S) p+ 2p-p)
(3.3) --p(24p(1-p)/p,(1-p))O,

Go(ij) Fo(ij) 2ppX2(1 2S/ S) (p, q- p) (p /p) 2p,p
+ 2(p+ p)- (pI + pJ) +

(8.4) ---2pp.(2(p, +p;) p(1--p,)

/ (p+ pj)(1 p pj)’ + 2pp(p/ p)(1 p-p)

That an inequality of the same nature

holds good is also a matter of course; this can also be verified in a
direct manner. Hence, we see further

(3.6) GF.
The general results reduce for m--2 to ones concerning MN
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type. However, this special case can be discussed rather briefly in
a direct manner. In fact, corresponding to (2.3) and (2.4), we have

(3.7) Fo(MM)-Fo(NN)---s’t, Fo(MN)=O,
and, corresponding to (2.5) and (2.6), we have

(3.8) (MM)--s’W, (NN)---st, (MN)=s’t.
Thus, we get the whole probability

(3.9) F--2s(2-st).
Comparing this with (2.16) of XV, we see that

(3.10) G-F--2st((2-5st)(1-2st)+ st(1-st))O.
By the way, the validity o (3.1) is here quite evident, since

(3.11) Fo- --2s’t’- 2s"t(1 -st)-2st

_
O.

4. Illustrative examples, recessive genes being existent.

The cases where recessive genes are existent can be treated, in
principle, in a similar manner, which will be illustrated by several
human blood types.

In case of ABO type, mother-child combinations with vanishing
probability are (O;AB) and (AB;O). Hence, we get

(4.1) Fo(O)--Fo(AB)--2pqr’, F(A)--Fo(B)--O;
(4.2) Foo=4pqr.

It would be noticed that Fo,o is identical with the whole probability
C,o of (1.9) in XI of absolute non-paternity.

Making use of probabilities of mother-child combinations, we
means of an analogous process as above, the

(0) -r. (pq(p +r) + pq(q + r))--pqr(1 + r),
(4.3) (A) --pr2.2pq +pq(p+r).r -pqr’(3p+r),

(B) qr 2pq + pq(q + r) r pqr(3q + r),
(AB)---pq(p+q).(pr +qr) --pqr(p+q)";

(4.4) o=2pqr(2-r+ r’).
Thus, the whole probability is given by the sum o (4.2) and (4.4):

(4.5) Fo--2pqr(4- r+ r).
An inequality corresponding to (3.1) becomes here

(4.6) Foo- o--2pqr(r r) O,
while that corresponding to (3.6) becomes

Go Fo-2r(1 r) + 2pq(2+ 2r + 5r r4)
(4.7) 2pq(7 + 12r+ 5r + 10r- r)

+ 4pq(1- 2r-4r) 2pq

_
O,

as is readily seen in view o2 pq (1-r)/4.

derive further, by
following results"
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In case of AA,BO type, the results are as follows"
Fo(O)-- 2pqr2, Fo(A)-O, Fo(A.)=2plP2q(p.,.+ 2r),

(4.8) Fo(B)=O, Fo(AB)---2pqr / 2pp.q(p/ 2r),
Fo(A.B) 2pqr

(4.9) Foa.o=4pqr /4pp.,.q(p/ 2r)=Fo,o /4pp.q(p./ 2r);
the last quantity coincides also with C.,.,o in (1.7) of XI.

(O)---r. pq(1 / r) / p.ro pq(1 / r),
(A)--pr 2pq /pp.p. -t- 2r)- 2pq+ pq(p/ r) (p+ r)

+ pp.q, r,
(A)---- p2r (2pq pq(p + q)) + p.(p+ 3p.r+ r’) pq(2-p-q)

(4.10) / p.q(p. / r) r2,
(B)=qr.2pq / p2qr. 2pq / pq(q / r).(p. + r) + p.q(q + r). r,
(AB)-pq(p+ q). (pr + qr + pp.(p. + 2r)/ p.qr + p.q(p + r))

+ pP2q" (p + q)r",
(A2B) pq(p / r). 2pq+ pp.q. (r-r + p(p / 2r r’))

/ pq(p/ q). (r2- r).
Summing up and comparing with (4.4), we get

(4.11) a.,o=o/2pp.q {p.,.(1 / p/ q+ r) / r(1 + 3p/ 3q)
4+ p+ pr+4pr + 3r} (p +p-p).

The whole probability is given by

(4.12) F,,o-Fo+ 2pp.q {p(3 + p+ q+ r) + r(5+ 3p+ 3q)
+ p+ 4p]r+ 4pr"+ 3r} (p + p=p).

In c.ases 0f Q and Qq+_ types there are no mother-child com-
binaons with vanishing probability. Hence, in coincidence with
(1.10) of XI, we get

(4.13)
Based on the same reason or ,on an analogous inequality as (3.1),
we get further

(4.14) -;+=0,
whence it follows that

(4.15) FQ FQq+_ O.

Namely, Q as well as Qq+_. types have no effect upon the detection
of interchange of infants with only reference ,to mother-child com-
binations.

It is noticed that the discontinuity between ABO and MN types
appears here also. In fact,

(4.16) [Fo]’-[F]<’, )=(. q)_-- 2pq(2- pq).
But, there is no discontinuity between ABO and Q types, AABO
and ABO as well as Qq+_ and Q types.
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The distribution .of genes maximizing the respective probability

can be determined in a usual way.
We first consider the probability (3.9) in case of MN type, for

which we get

(5.1) dF/d(st)-2st(4-3st)
Hence, the maximizing distribufi:on is given by

(5.2) s--t-----i/4; 2V/=-1/4, MN=I/2,
yielding the maximum value

(5.3) (F) 7/32=0.21875.
The whole probability (2.17) attains its stationary value

or the symmetric distribution

(5.5) p--1/m (i=1, --., m),

which will perhaps be the actual maximizing one. The value (5.4)
increases with m and tends to 1 as m-c. In fact,

(d
(F)’t= 1 1 + + + < 0d(1/m) m ---,, -- (m_ 2).

In case of ABO type, the probability (4.5) can be regarded as

a function of two independent variables r and pq with admissible
range 0_rl, 0pq(1-r):"/4. Since it is linear in pq, the
maximum will be attained when pq=(1-r)/4, that is

(.5.6) p--q--(1-r)/2, 0<v<l.
Substituting this into (4.5), Fzo can be regarded as a function of
r alone which will be denoted by f(r). The equation

(5.7) 0---- 2f’ (r)=r(1 -r)(1 2r),(8- 3r + 3r)
possesses a unique root, namely 1/2, contained in 0r(1. Thus,
together with (5.6), the maximizing distribution is given by

r=1/2, p=q---1/4;
(5.s)

0=1/4, A=B-5/16, AS=l/8;
the maximum value being

(5.9) " ---15/128-- 0.1172.ABQ]

The case of AABO type, though somewhat troublesome, can
be treated in a similar way. The cases Q and Qq+_ types having
vaninshing probability, the maximum problem is non-sense.

--To be continued--


