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2. On Homotopy Classification and Extension

By Minoru NAKAOKA
Department of Mathematics, Osaka City University
(Comm. by Z. SUETUNA, M.J.A., Jan. 12, 1963)

In the present note we give a homotopy classification theorem
for mappings of an (n+k)-dimensional complex into a finite complex
Y such that

@) 7(Y)=0 for 0<i<n and n<i<n-+k,
and the corresponding extension theorem, where n>k+2 and £<6.9»

§1. Let X(3x, be an arcwise connected and simply connected
space, and let X*=X\Je™\J---\Je", where the boundary é"(>q,)
of each cell ¢™ is attached to X by a map f,: (", ¢)— (X, z). We
refer to such a space X* as {Xle™, -+, ¢€";f1, ++-,fs}. Suppose
that ¢, : (E", E", po)—(e™, &"y q,) (1=1, +--,t<s) is a representative
of the homotopy eclass {g,} €7, (e, é™,q), and that a condition

E‘_‘, { fi°(g¢|E‘T)}=0 is satisfied in z,_(X, 2,). Then we can construct
=1

a map of an r-sphere S” in X* as follows: Let&] (i=1,2, ---,¢t) be
t disjoint r-cells in S” which have a single point p in common, and
let 8’=\D &%, é'=\tjé:. Choose an orientation of S”, and orient each
& in agf;:eement é;ilth S”. If we map each & to ¢™ by the map g,,
we get a map ¢’ :(&", &, p)—>(X*, X, x,) such that ¢’|&" is null-
homotopic in X. Map now S"—¢&" in X by an arbitrary null-
homotopy of g'lér, then we obtain a map of S” in X*. Thisisthe
desired map and such a map is denoted by <gi, goy +++, g,/ X >.

As for the spherical-maps, we use the following notations:
%, :8"™—=>8" (r=1) is the identity map;7,:S"*'—>S" (r=2), v, : S"**—>S8"
(r=4) are the suspensions of the Hopf maps 7,, v, respectively.

Let 9, :m,u(e™", &"*")~x,(S”) be the homotopy boundary, then we
refer to maps in the homotopy classes 8;%{7,}, 9;4{7,.}, o7L{»,} as

Tpr1y Upe1s Dps1 TeSpectively.

§2. Using the homology theory of Abelian groups due to
Eilenberg—MacLane® and the known results relative to the homotopy

1) Full details will appear in the Journal of the Institute of Polytechnics,
Osaka City University. The first part of the details was already presented to
the editor of the journai.

2) A general theory of this problem was given by S. Eilenberg—S. MacLane
(cf. Proc. Nat. Acad. Sci., U.S.A., IV).

8) 8. Eilenberg—S. MacLane: Cohomology theory of Abelian groups and
homotopy theory IL. Proc. Nat. Acad. Sei., U.S.A., 36, No. 11 (1950); IV ibid.,
38, No. 4 (1952).
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groups of spheres®, we can construct a concrete (n-+k)-dimensional
cell complex Ri(h) such that =, (RiAh))=0 for 0<i<n, n<i<n+k
and such that z,(R:h))~I, (n>k, k<6), where I, denotes the integers
mod A.
Example 1. The case A=0.
R,(0)=S", Ru(0)={S"|et**; a'=7,},
R(0)={R3(0)]ef**;  a*=<2i3|S">},
Euy(0)={R(0)|e**; « =vn},
Ri(0)={Ri(0)]€/*%;  at=<6i3 T8 R0)>},
R (0)= {E(0)er**, eé’*s, A=<TRS">,  a=<79uIS">},
RL(0)={R O)ler*, e+ al=<24R,, — iR RA0)>,
= <24P|S"Jer >},
Example 2. The case h=2.
Ru(2)={S"|et*; 2i,}, Ru(2)={R(2)|ef**; a'},
R2)={R2)|e1, e*%; o2, = <TDu|S">},
Ri(2)={R@)|er, ep*; o, B= <2y, 12| RA2) >}
Ri2)={Ri@)|er?, e5*%; <20, 19, 855U RA(0)>,
=<7, 35S RL(0) >,
R(2)={R5(2)|e1**, e*®, e3*%;  of, o, fP= <202y, T BU2) >},
R(2)={R(2)|er*", e*7, e5*", ef*";  af, o, fi= <Pi%|Ru(2)>,
= <72, T8 BHO) U el >}.
Example 3. The case ~2=3.
Ry(B)={S"|er*%; 84,} (1=1,2,3),
R,(3)={R:(3)|er**; a’},
Ri(3)={RiB)ler*’, e*’;  <BiRy, —iulS">, r=<8u[S">},
Ri(B)=Ri,(3)={Ri3)le™"; 1°=<Bi®u|Ri(3)>}.
In the above, the notations 7®, i (1=1,2) denote the maps 7,:
(™, e" ) — (], &}), 4, :(e”, &) (e}, é}) respectively. The orders of the
elements {a*}emx,, k(Rli(O)), {8*} € 7, (BEQ)), {7*} € 7,4 (REB)) are
as follows: The orders of {a*} (k: even), {f*} (k: odd) and {;°} are
all zero, and the orders of {a’}, {7‘} are 6, 3 respectively. The
remainders are all of order 2.
§3. Let HYK, L; G) be the g-th cohomology group of a com-
plex pair (K, L) with coefficients in G. Suppose that t:G—G’ is a

4) J.P.Serre: Sur les groups d’Eilenberg—MacLane, C. R. (Paris) 234 (1952),
and Sur la suspension de Freudenthal, ibid., 234 (1952).
H. Toda: Generalized Whitehead products and homotopy groups of spheres,
to appoear in the, iournal indicated in footnote 1.
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homomorphism such that rt=0 (r=2, 8). Following N. E. Steenrod®,
we can define for any even ¢ the cyclic reduced power

@) Stit) : HY(K, L; G)~H*"'(K, L; G,).”

If ¢ is odd, we have for any homomorphism ¢:G—G’ the cyclic
reduced power Sti(t):HYK,L;G)—>H"(K,L;G’). Especially we
can consider that St}(¢) takes values in H**(K, L; ,G'):®

3) Sti(¢) : HY(K, L; G)»H*(K, L; ,G').

Modifying the definition of the cyclic reduced power, we can define®
an operation

€Y Sti(¢) : HY(K, L; —H"'(K, L; G')

for any given homomorphism ¢:G—G, and any odd <. ¢ is called a
trace for the reduced power. Sti(¢) satisfies the following properties:
i) f*Stl=St!f* for any map f, ii) 0*Sti=Stis* for the coboundary
operator ¢*, iii) (f—g)*Sti=Sti{(f—g)* where (f—g)* denotes the dif-
ference homomorphism for maps f,g such that f|L=g|L, iv)
rSti=0. As for St!, we have also the similar properties.

Let ©Q° be the quarternion projective plane and Q"** the (n—4)-
fold suspension of Qf (n=4). If we denote by {¢"**(r)} a generator
of H™*(Q"+*;1,), we have

St{e"(0)} = = {e"*'(r)} (r=2,3)

§4. Let {a} be an element of =,(Y), and a*:S™*“—>RE0) the
map defined in Example 1. Let us consider S™ as the n-skelton of
RE(0), and let a’:S"—>Y be a representative of a. Extend a’ to
a’ :RX0)—Y and map {a} to {a’'°a’"} en,,,(Y). Then this mapping
determines a homomorphism «* of n,(Y) of =,..(Y) if k=1,3,5,
and to (7,..(Y)), if k=2,6, and to (7,..(Y))s if k=4. Similary, we
can define a homomorphism S of ,(r,(Y)) to =,..(Y) if k=2,4,6,
and to (7,+(Y)), if £k=38,5, by using f*:S"**>RE?2). Furthermore
we can define a homomorphism 7% of 4(7,(Y)) to m,..(Y) if k=4,
and to (7,+.(Y)); if k=5, by using y*:S"**—RE(3).

Finally let iy : 7, (Y )>mu(Y), by : 2(mo(Y))=o(mo(Y)) be the identity
homomorphisms, and p, :7,(Y)—>(7,(Y)), the projection.

Taking ok, B%, v, ix, v+ 2s a trace of (2),(8) or (4), we have
the various ecyclic reduced powers. Using these operations, our

5) N. E. Steenrod: Products of cocycles and extensions of mappings, Ann.
of Math., 48 (1947), and Reduced powers of cohomology classes, ibid., 56 (1952).
Stl coincides with the Steenrod’s operation §”(.-1)¢-; except the signature.

6) ,G denotes the subgroup of G which consists of all the elements of order
7, and G, is the factor group G/»G.

7) For r=2, the similar operation was considered by N. Shimada—H. Uehara:
Classification of mappings of an (n+2)-complex..., Nagoya Math. Jour., 4 (1952).
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main theorems can be stated as follows:
Theorem 1 (the relative extension theorem)

Let Y be a complex with (1) and let n=k+2. If f, g are maps
of K"\JL into Y which coincide on L and possess extensions to
K™\ JL, then the difference of their secondary obstructions 2*+***(f)
— 2" (g) 48 given by + P, ("), where 1"=(f—g)* 1®° and P, is the
Sollowing :

P =Sti(a}) if k=12 =Sti(al)+SBBLStIG,) if k=2,

=StiBas) +StiAL)St(E) +Sti(—2a8)  if k=3,
(5) =Sti(art,) +Sti(BLIStI(E) + Sti(— ad) + St(rLIStiEy)  if k=4,
= St ISt + S )StA(Ds) + SE(FL)SEE) + StE(3)St(E)
’l:f k=—"5,
=St§(a‘1’*)st§(p2*) + Stg(ag*)Stg(Pz*) + Sté(ﬁ?*)sﬁ(@*)sﬁ(@*)
+ St3(55,)St:(24)Sti(45)  if k=6.
Theorem 2 (the homotopy classification theorem)

Let Y be a complex with (1) and fo, fi: K**'—Y be normal maps
such that fo|K"=fi|K" (n=k+2). Then fif; rel. L if and only if
there ewists a cohomology class e"*e H" (K, L; n,(Y)) such that
A (fo f)=2Pe"", where d™*(fo, f1)€ H""(K, L; 7,.,(Y)) s the
cohomology class of the separation cocycle for f, and f, and P, is
the homomorphism (5).

The proofs of Theorems 1 and 2 are performed by a method
which is in a sense a generalization of that of Steenrod®: the com-
plexes M” in his paper are replaced here by the cell complexes
RE(R).

§5. J. Adem™ recently obtained the various relations with
respect to the iterated Steenrod squares St{. We can prove some
of these relations by using the cell complex RY2) in Example 2.
Among all, we have

StiStz=StiStl, StaSt; 4+ Sti=StiSts3,
with coefficients in I,.

8) 1 denotes the same as in J. H. C. Whitehead: On the theory of obstrue-
tions, Ann. of Math., 54 (1951).

9) This was obtained by many authors: J. H. C. Whitehead®, S. Eilenberg—
S. MacLane 2, and M. M. Postnikov (in Russian).

10) This was obtained first by N. Shimada—H. Uehara®.

11) We can get also in this case the theorems 1 and 2 for m=Fk+1=4. The
Pontrjagin square and Postnikov square are needed. cf. 1

12) J. Adem: The iteration of the Steenrod Squares in algebraic torology,
Proc. Nat. Acad. of Sci., U.S.A., 38 (1952).



