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13. On Rings of Continuous Functions and the Dimension
of Metric Spaces

By Jun-iti NAGATA
Osaka City University and University of Washington
(Comm. by K. KUNUGI, M.J.A., Jan. 12, 1960)

M. Katétov [1] has once established an interesting theory on a
relation between the inductive (Menger-Urysohn) dimension of a com-
pact space R and the structure of the ring of all continuous functions
on RE. The purpose of this brief note is to give a slight extension to
Katétov’s theory for a metric space while simplifying his discussion.

According to [1], we consider an analytical ring, i.e. a commuta-

tive topological ring with a unit ¢ and a continuous real scalar multi-
plication. A subring C, of an analytical ring C is called analytically
closed if
(1) 2eeC, for any real 2, (2) xcC, whenever z¢C, 2"+a,x" '4-.-
+a,=0, a,C, (3) C,=C.
Let C’ be a subset of C; then a subset M of C is called an analytical
base of C’ in C if there exists no analytically closed subring C, > C’
containing M. The least number of an analytical base of C’ in C is
called the analytical dimension of C’ in C and denoted by dim (C’, C).
The ring C(R) of all bounded real-valued continuous functions of R is
an analytical ring as for its strong topology. We denote by U(R) the
subset of C (R) consisting of all uniformly continuous functions. Further-
more, according to [2], we call a continuous mapping f of a metric
space R into a metric space S uniformly 0-dimensional if for any
€>0 there exists >0 such that 6(U)<e whenever UCR, diam
Sf(U)<n, where 6(U) < ¢ means the fact that there exists an open
covering B of U such that mesh B=sup {diam V|VeB}< e and order
B<1. The covering dimension of R or the strong inductive dimension
of R as the same is denoted by dim R. Now we can prove the fol-
lowing

Theorem. dim R=dim (U(R), C(R)) for every locally compact,
metric space R.

To establish this theorem we prove some lemmas.

Lemma 1. Let f(2)=(fi(2), - ,f.(x)) be a uniformly 0-dimen-
stonal, bounded mapping of a metric space R into the n-dimensional
Euclidean space E,. Let C; be an analytically closed subring of C(R)
containing fi,+- - f,; then for every sets F and G of R with distance
(F, G)=d(F,G)>0, there exists geC, such that g(F)=1, 9(G)=0, where
g(F)=1, for example, means that g(x)=1 for every wxcF.
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Proof. Let d(F,G)=e¢ >0 and take » > 0 such that diam f(U)<7y
for UCR implies d(U)<e. Choosing & >0 such that diam ;f-il (r,—2¢,
r,+28) <% for every r, we cover f(R) with finitely many cubes

L= 1 (=8 ructel, k=1L
Let U.=f""L), Vi=r"'(Jy),
where J= ilill (ry;—28, 1,+26).

It easily follows from f;eC, that f,,=(2&—|f,—7|) _é €C,, and hence
ka = ‘E[ fkieci- Then
=1

Ffi@)=1 for every xzcU,
fux)>0 for every xzcV,,
Fox) =0 for every wxcV,—V,.
Since diam f(V,)=diam J, <7, we can find an open covering 8B, of V,
with mesh B, <¢, order B, <1. It is easy to see that S(F, B,)=W,
is an open closed set of V, satisfying W, G=¢, W,DOF_ - V,. Now
we define a function g, by
gk(x)sz(x)7 we W,
gk(x)ZO’ xé W,.
Then since g, clearly satisfies g,¢C(R) and g}—f.9.=0 for f, ,ceCI,lwe
get g,.¢C, satisfying g (F ~U,) =1, g(G)=0, g,=0. Letting g=k§_,”‘lg,c
we have an element g of C, satisfying g(F)=1, g(G)=0, g =0. -

Lemma 2. dim R=dim (U(R), C(R)) for every metric space R.

Proof. If dim R <mn, then by [2] there exists a uniformly 0-
dimensional, bounded mapping f(x)=(f,(x), -, f.(x)) of R into E,.
Hence any analytically closed subring C, of C(R) containing f,,---, f.
also contains, for every disjoint closed sets F' and G with d(F, G)>0,
peC; such that ¢(F)=0, ¢(G)=1 by Lemma 2. Hence by an analogous
theorem to that of E. Hewitt [3, Theorem 1], we get, for every gc U(R)
and ¢>0 a polynomial P(¢,,---,¢,) in ¢,eC,, t=1,---, k such that
|6—P(¢py,-++,¢,)| <e. Therefore cC,=C,, which implies C,2U(R).
Thus (f4,- -+, f.) is an analytical base of U(R) in C(R), i.e. dim (U(R),
C(R))<mn.

Lemma 3. dim R <dim (U(R), C(R)) for every locally compact,
metric space R.

Proof. Let (fi,---,f.) be an analytical base of U(R) in C(R);
then f(x)=(fy(x),- -, f.(x)) is a bounded continuous mapping of R onto
a subset f(R) of E,. Since R is locally compact, there is a locally
finite closed covering {R,|ac®Q} consisting of compact sets R,. Let U
be any finite open covering of R,; then there exists, for every ¢e f(R),
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a nbd (=neighborhood) V(g) of ¢ in f(R) such that o(f *V(g)) <1, i.e.
there exists an open covering B of f-'V(q) satisfying B<U in R, and
order B<1. It is enough to prove this proposition just for every
binary open covering U of R,. For we can find, for every finite open
covering Ul of R, binary open coverings U,,---,U, of R, satisfying
U ne s A<, Then o(f-'V(9)ZU,, i=1,---,k for nbds V(q), =1,

k
oo,k of q¢ imply 8(f-*~V,(q)<U. Now assume the contrary, i.e. let
=1

F and G be disjoint closed sets of R, such that a(f~'V(q))<{F°, G°}
for every nbd V(g) of q.

Let D={g|geC(R), for every ¢ >0, there exist a nbd V(g) of ¢ in
Sf(R) and an open covering U of f~'V(q) such that mesh g(ll)<e and
order UL <1}, where g(l) denotes the covering {g(U)|Uecll} then D is
an analytically closed subring containing f,,---, f,. Let us just show
that ge D whenever geC(R), g"+a, 9" *+---+a,=0, a,c D, where this
n is not related with the number of f,. Let us denote by ¢,(b,,---,b,),
k=1,2,---,n the n roots of the equation

¥y +by 4. - 4b,=0.
Let |a;|=<K, i=1,- - -, n; then since g,(b,,- - -, b,) are continuous functions
of b;,+++,b, and accordingly are uniformly continuous for |b,|=<K,
1=1,---,m, for any ¢>0 we can find 6 >0 such that
|b,=b| <9, |b;|=<K, |b]|=<K, i=1,---,n imply

lgk(bl,--~,bn>—gk<b;,-~,b,:>1<-%, k=1,---,n.

Now let V(g) be a nbd of ¢ and U={U,|rel’} an open covering of
f'V(q) such that mesh a,(l1)<d, i=1,.--,n and order U <1. More-
over, let

{xlgk(al(x)’ ) an(x))—g(w)=0, xe Ur}': Ukr;

{Ukr‘kzl’ * Y n}:ur’

{Sn(Ukn ur)l Uk,eu,}zéB,.
Then B, is an open covering of U, with order B, <1 and mesh g¢(B,)
< ¢ hence B=""{B,|rel'} is an open covering of f~'V(q) with order
B=<1 and mesh g(B) <e. Thus we get geD. Since R, is compact, it
must be d(F,G)>0, and hence there exists a function & ¢ U(R) such
that A(F)=0, h(G)=1. However, from the assumption D does not
contain such a function h, which contradicts the fact that (fy,---, f,)
is an analytical base of U(R) in C(R). Hence for every finite open
covering I of R, and for every point ¢ of f(R) there exists a nbd V(gq)
of q satisfying o(f*V(q))<U. Take an open refinement B={V,|reI'}
of {V(q)|ge f(R)} with order B=m-+1. Then since o(f V)=, we
can find an open covering &, of f-}(V,) satisfying B, <, order W,=<1.
Now W=""{W,|rel'} restricted in R, is an open refinement of U with
order W <n-+1. Therefore we can conclude dim R,<mn. Hence, by
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use of the sum-theorem, we get dim B <n.

Combining Lemma 8 with Lemma 2, we can conclude the validity
of the theorem.

Incidentally, let us show the following

Corollary. U(R) of every metric space R has an analytical base
in C(R) comsisting of countably many elements.

While checking up the proofs of Lemmas 1, 2, we know that this
corollary is a direct consequence of the following

Lemma 4. Every metric space R can be mapped into the Hilbert
cube I, by a uniformly 0-dimensional mapping.

Proof. Since, by [4], every metric space R can be imbedded in
a product of countably many one-dimensional metric spaces, we can
conclude this lemma from the fact owing to [2] that every one-di-
mensional metric space is mapped into E, by a uniformly 0-dimensional,
bounded function.
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