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(Comm. by Kinjir6 Kuu, .z.., Dee. 18, 1965)

Let R be the space of reals. If Y,W(i--1,...,k) are semi-
normed spaces then by L(Y, ..., Y; W) we shall denote the space
of all operators u which are k-linear and continuous from the pro-
duct of the spaces Y (i-1, ...,k) into the space W. The semi-
norm of elements in the above spaces will be denoted by

A family of sets V of an abstract space X will be called a pre-
ring if for any two sets A, A. e V we have A A e V, and there
exists disjoint sets B,..., B e V such that A\A-BU... U B.

A nonnegative function v on the pre-ring V will be called a
volume if for every countable family of disjoint sets A e V ($ e T)
such that A--, A e V we have v(A)--. v(A).

T T

A triple (X,V,v) where V is a pre-ring of sets of X and v
is a volume on V, will be called a volume space. If the triples
(X, V, v) (i--1, ..., k) are volume spaces then the triple (X, V, v)
defined by X--X X and V=V V consisting of all
sets of the form A-A A; A e V with v(A)--v(A)...v(A)
is a volume space.

Let (X, V, v) be a fixed volume space. Denote by M(v, Z)
(1q_) the space of all finite additive functions from the pre-
ring V into a Banach space Z and such that (A)--0 if v(A)--O and

sup {(.. z(A)[q v(A)-q)/q}
when q :/: , where the supremum is taken over all finite families
of disjoint sets A e V such that v(A)
let sup (]/(A) v(A)-: A e V}--][/ ]]q ( where the supremum is taken
over all sets A e V such that v(A)

Now if lips/ 1/q-- 1, .p:> 1, i-- 1,2 and u e L(Y, Y, Z; W), denote
by M(q, v, Z, u) the family of all functions/(A, A) from V V into
Z which are additive in each variable A separately and/(A,A.)-0
if v(A)-O or v(A.)--0; moreover assume that the following norm
is finite ]]/]] sup {] _,u(y,y,/z(A,A))(v(A))-’(v(A))-"aa. ]}
where the supremum is taken over all finite systems such that I]Y []- 1
[] Y II <-1, Y, a [__G 1, Y, a,. [<_ 1, where A is a family of disjoint
sets of the pre-ring V such that v(A)>O and similarly A is a
finite family of disjoint sets of the pre-ring V. such that v(A)0.
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If q--q=q and u(y, y, z)--z(y, y) for y e Y, z e L(Y, Y; W)
then we have Mq(v, Z) M(q, q, v, v, Z, u).

Theorem 1. Let (X, V, v) be the product volume space of the
volume spaces (X’, V, v) (i=1, ..., k). If / e Mq(v, Z) where 1<
q_ and u e L(Z, ., Z; W) then / e Mq(v, W) where

[(A ... A)=u([(A), ..., g(A)) for A e V
Let (X, V, v) be a volume space and Y be a fixed Banach space.

Denote by S(V, Y)=S(Y) the set of all functions of the form h--
yi+...+y: where y e Y and A e V are disjoint sets. Put
II h ll-ly v(A) / / Y v(A).

A sequence of functions s is called basic if there exist a sequence

he S(Y) and a constant M>0 such that s-h/.../h, IIhll<-
M4 for n-l, 2,...

A set AX is called a null set if for every 0 there exists
a countable family of sets Ae V(teT) such that AUA and

v(A)<.
A condition c(x) depending on a parameter x AoX is said to

be satisfied almost everywhere on the set A0 if there exists a null
set A such that condition is satisfied at every point of the set Ao\A.

Denote by L(v, Y) the space of all iunctions f such that there
exists a basic sequence s convergent almost everywhere on the
space X to the function f. Put ]]fll-lim II s ]I. This definition is
correct, that is, it doesn’t depend on the particular choice of the
basic sequence. It follows from Theorem 1 [1], that the space
(L(v, Y), II II) is a complete seminormed space. The set of simple
functions S(V, Y) is dense in the space L(v, Y) according to Lem-
mas 1 and 4 [1].

Now let l___p< oo. Denote by a the function a(y)-- y I- for
y e Y. Since the unction and its inverse a-(y)--I y I- or y e Y
are continuous on the space Y therefore it establishes a homeomor-
phism of the space onto itself.

Denote by L(v, Y) the space of all functions f from the set
X into the space Y such that a of e L(v, Y). Put

The space (L(v, Y), II I1) is a complete seminormed space and the
set S(V, Y) is dense in it according to Theorem 1 4.

Now let (X, V, v) be the product space of the volume spaces
(X, V, v) (i- 1, 2). Take any simple unctions s e S(V, Y) and
assume that s--,y.. Let eM(v,Z) and let u be a
multilinear continuous operator from the product of the Banach
spaces Y, Y., Z into a Banach space W. Define
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s, dl)---,, u(y,y,l(A A.)).
It is easy to see that the definition is correct. Put U= L(Y, Y, Z; W).
The integral operator just defined is linear in each variable u,s,s, f
separately and is defined on a dense set of the product of the spaces
U, L(v, Y), L(v., Y), M(v, A), where 1< p___ and lip/ l/q- 1.
Now from the inequality

and irom the completeness of the space W we get that there exists
a unique extension of the operator to a multilinear continuous oper-
ator defined on U L(v, Y) L(v, Y) M(v, Z).

In a similar way one could define the integral operator _fUo(f, d)
for f e L(v, Y), t e Mq(v, X), Uo e L( Y, Z; W). When it is important
to indicate the variable of integration which shall use the symbol

IUo(f(x), [(dx)).

Fubini’s Theorem for the integral f u(fi, fi, d)
Take any multilinear continuous operator u e L(Y, Y, Z; W)- U.

Define an operator u(y., z)-u(., y, z) for y e Y, z e Z. We see that

u e L(Y, Z; Z0)- U where Z0= L(Y, W). Define also the operator
Uo(y, Zo)-Zo(y) for y e Y, z0 e Z0. We have u0 e L(Y, Z0; W) and
lul-l.u l,

Let (X, V, v) be the product volume space of the volume spaces
(X, V, v) (i- 1, 2). Assume that l_<p< and 1/p+ 1/q- 1. We
have the iollowing theorem.

Theorem 2. 1 ) If / e M(v, Z) then or all A e V the
vector function / defined by the formula

t(A)-I(A A) for all A. e V
belongs to the space M(v, Z).

(2) The operator /-r(f,/) defined by means of the integral

fu(f, dl,) for all A e V(A)-
is bilinear from the product L(v., Y)M(v,Z) into the space

M(v, Zo) and
]1 l11]q-] u ll f2 I1 ]1 [ I]q for all f2 e L(v, Y), l e Mq(v, Z).
(3) Moreover the following equality holds

I u(fi, f, d)- IUo(fi dr(ft., [))

for all f L(v, Y) (i-1, 2),/ e M(v, Z).
(The above theorem can be easily generalized to the case when

.f e L(v, Y), f e L.(v, Y), and / e M(q, q, v, v, Z, u)-M.
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If we take the trilinear operator u(y, y, z)-z(y, y) for y e Y,
z e Z and define Z=L(Y, Y; W), then the space M is isomorphic
and isometric to the space of all bilinear continuous operators h from
the product L(v, Y) L.(v., Y) into the space W).

Consider the following example. Let Y, Z, W be equal to the
space C of complex numbers. Let u(y, y, z)-yyz. Then we have
u(y, z)-yz and Uo(y, Zo)- yZo. If f e L(v, C), p e M(v, C) then
we get from the theorem

f(x)f(x)(dx x dx)- f(x)(dx)
p(A)- f(x)g(A dx) for all A e V.where

Fubini’s theorem for generalized Lebesgue-Bochner-Stieltjes in-
tegral.

Denote by (X, V, v) the product volume space of the volume
spaces (X, V, v). Let lp< and lip+ l/q- 1.

Let Y, Z, Z, W be Banach spaces. Assume that u e U=L(Y,
Z, Z; W) and define a new operator u(y, z)-u(y,., z) for y e Y,
and z e Z. We see that u e L(Y, Z; Y), where Y=L(Z; W). Define
u0(y, z)-y(z) for y e Y and z e Z. Notice that u0 e L(Y, Z; W)
and u-u and u0-l.

Put N={f e L(v, Y). ]f]]-O}. The set N is linear and ac-
cording Theorem 1 [1, coincides with the set of all functions f from
the set X into the space Y such that f(x)-O v-a.e.

Consider the quotient space L(v, Y)/N and define the norm of
a class [f-f+N by ]][f]]-]f]. This definition is correct.
Notice that in order to determine a class [f it is enough to give
the values of the function f(x) v-almost everywhere.

Since the integral operator u0(f, d)is linear in the variable

f, and we have the estimation

therefore the following definition

o(f, d,)- Uo(f d)
is correct where f e L(v, Y)/N. The operator defined in this

u0(g, dp) is bilinear and we haveway

where ,(v, Y)/N and M(v, ).
Theorem 3. (1) If f ,(v, Y), there exists -null set C

sueh hat f(, .) ,(, Y) if C.
() he oerator -f(f, ) defined by the formula
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f(c)-- u(f(,l, .), d[2 if x e C
is bilinear from the product L(v, Y)M(m, Z) into the space
L(v, Y)/N and

for all f e L(v, Y) and p e M(v, Z).
u(f, dZ d2)- Uo(r(f, ),d) for all fe L(v, Y),3 ) Moreover

e M(v, Z) (i= 1, 2).
Consider the following example. Let Y=Z be a complex Ba.nach

space and let Z=Z=C be the space of complex numbers. Define
u(y, z, z)=zzy for all z e C, y e Y. We see that we may identify
Y= W. Thus we have u(y, z)=yz and also u0(y,

Now if fe L(v, Y) and e M(v, C) then f(x, .)e L(v, Y)
for v-almost all x e X. For the function h(x)-f(x, we
have h e L(v, Y) and

Pot the ease p=l we get the elassieal Pubini theorem for
Boehner summable funetions (eomare Dunford and 8ehwart: inear
Oerators, . 19).
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