141. On Some Results Involving Jacobi Polynomials and the Generalized Function $\widetilde{\omega}_{\mu_{1}, \cdots, \mu_{n}}(x)$

By R. S. Dahiya

(Comm. by Kinjirô Kunugi, m. J. A., June 12, 1970)

Abstract. The object of this paper is to evaluate the following type of multiple integrals:

$$
\prod_{r=1}^{m} \int_{0}^{1} x_{r}^{\rho_{r} r}\left(1-x_{r}\right)^{\beta_{r}}{P_{n_{r}}^{\left(\alpha r, \beta_{r}\right)}\left(1-2 x_{r}\right) d x_{r} \widetilde{\omega}_{\mu_{1}, \cdots, \mu_{n}}\left[\lambda\left(x_{1} \cdots x_{m}\right)^{ \pm h / 2}\right] . ~ . ~}_{\text {. }} .
$$

These integrals are then employed to establish the expansions for the $\widetilde{\omega}_{\mu_{1}, \ldots, \mu_{n}}(x)$ function involving Jacobi polynomials.

1. Introduction. The function $\widetilde{\omega}_{\mu_{1}, \cdots, \mu_{n}}(x)$ was defined [1] by the integral equation

$$
\begin{align*}
\widetilde{\omega}_{\mu_{1}, \cdots, \mu_{n}}(x)= & x^{1 / 2} \int_{0}^{\infty} \cdots \int_{0}^{\infty} J_{\mu_{1}}\left(t_{1}\right) \cdots J_{\mu_{n-1}}\left(t_{n-1}\right) J_{\mu_{n}}\left(\frac{x}{t_{1} \cdots t_{n-1}}\right) \tag{1.1}\\
& \cdot\left(t_{1} \cdots t_{n-1}\right)^{-1} d t_{1} \cdots d t_{n-1} \\
= & \int_{0}^{\infty} \widetilde{\omega}_{\mu_{1}, \cdots, \mu_{n-1}}(x / t) J_{\mu_{n}}(t) t^{-1 / 2} d t
\end{align*}
$$

Where $R\left(\mu_{k}+\frac{1}{2}\right) \geq 0, k=1,2, \cdots, n$ and μ^{\prime} s may be permuted among themselves.

The following results are known.

$$
\begin{equation*}
\widetilde{\omega}_{\mu}(x)=\sqrt{x} J_{\mu}(x), \quad \widetilde{\omega}_{\mu, \mu+1}(x)=J_{2 \mu+1}(2 \sqrt{x}), \quad R(\mu)>-1 . \tag{1.2}
\end{equation*}
$$

(1.3) The Mellin transform of $\widetilde{\omega}_{\mu_{1}, \cdots, \mu_{n}}(x)$ is

$$
2^{n(s-1 / 2)} \cdot \frac{\Gamma\left(\frac{\mu_{1}}{2}+\frac{s}{2}+\frac{1}{4}\right) \cdots \Gamma\left(\frac{\mu_{n}}{2}+\frac{s}{2}+\frac{1}{4}\right)}{\Gamma\left(\frac{\mu_{1}}{2}-\frac{s}{2}+\frac{3}{4}\right) \cdots \Gamma\left(\frac{\mu_{n}}{2}-\frac{s}{2}+\frac{3}{4}\right)}
$$

In this paper we have evaluated some multiple integrals involving the above generalized function and empolyed them to obtain some expansion formulae for the generalized function $\widetilde{\omega}_{\mu_{1}, \cdots, \mu_{n}}(x)$. Particular cases have also been given with proper choice of parameters.
2. The multiple integrals. The integrals to be evaluated are:

$$
\begin{align*}
& \prod_{r=1}^{m} \int_{0}^{1} x_{r}^{\rho_{r}\left(1-x_{r}\right)^{\beta_{r}} \boldsymbol{P}_{n_{r}}^{\left(\alpha_{r}, \beta_{r}\right)}\left(1-2 x_{r}\right) d x_{r} \widetilde{\omega}_{\mu_{1}, \cdots, \mu_{n}}\left[\lambda\left(x_{1} \cdots x_{m}\right)^{ \pm h / 2}\right]} \tag{2.1}\\
& =\frac{h^{-\Sigma \beta_{r}-1}}{\pi 2^{n / 2}} \prod_{r=1}^{m}\left(\frac{\Gamma\left(\beta_{r}+n_{r}+1\right)}{\Gamma\left(n_{r}+1\right)}\right) \sum_{i,-i} \frac{1}{i} G_{2 n+2 m h+1,2 m h+1}^{m h+1, m h+n+1} \\
& \times\left(\frac{2^{2 n} e^{i \pi}}{\lambda^{2}} \left\lvert\, \begin{array}{l}
\left(\frac{3}{4}-\frac{\mu_{j}}{2}\right)_{n}, \Delta\left(h, \rho_{j}-\alpha_{j}-n_{j}+1\right)_{m}, 1, \\
\Delta\left(h, \rho_{j}+1\right)_{m}, 1,
\end{array}\right.\right.
\end{align*}
$$

$$
\left.\begin{array}{l}
\left(\frac{3}{4}+\frac{\mu_{j}}{2}\right)_{n}, \Delta\left(h, \beta_{j}+\rho_{j}+n_{j}+2\right)_{m} \\
\Delta\left(h, \rho_{j}-\alpha_{j}+1\right)_{m}
\end{array}\right)
$$

where $R\left(\mu_{k}\right) \geq-\frac{1}{2}, k=1,2, \cdots, n, R(\rho, \beta)>-1$ and
(i) the symbol $\sum_{i,-i}$ means that in the expression following it, i is to be replaced by $-i$ and the two expressions are to be added.
(ii) The symbol $\left(\frac{3}{4}-\frac{\mu_{j}}{2}\right)_{n}$ denotes n-parameters $\frac{3}{4}-\frac{\mu_{1}}{2}, \frac{3}{4}-\frac{\mu_{2}}{2}, \ldots$ $\cdots, \frac{3}{4}-\frac{\mu_{n}}{2}$.
(iii) the symbol $\Delta(h, \alpha)$ denotes h-parameters $\frac{\alpha}{h}, \frac{\alpha+1}{h}, \cdots, \frac{\alpha+h-1}{h}$ and $\Delta\left(h, \alpha_{j}\right)_{m}$ denotes $m h$-parameters:

$$
\Delta\left(h, \alpha_{1}\right), \Delta\left(h, \alpha_{2}\right), \cdots, \Delta\left(h, \alpha_{m}\right) .
$$

(iv) h is a positive number.
(2.2) $\prod_{r=1}^{m} \int_{0}^{1} x_{r}^{\rho_{r}^{r}\left(1-x_{r}\right)^{\beta_{r}} P_{n_{r}}^{\left(\alpha_{r}, \beta_{r}\right)}\left(1-2 x_{r}\right) d x_{r} \widetilde{\omega}_{\mu_{1}, \cdots, \mu_{n}}\left[\lambda\left(x_{1} \cdots x_{m}\right)^{-h / 2}\right]}$

$$
\left.\begin{array}{rl}
= & \frac{h^{-\Sigma \beta_{r}-1} \prod_{r=1}^{m} \Gamma\left(\beta_{r}+n_{r}+1\right)}{\pi 2^{n / 2} \prod_{r=1}^{m} \Gamma\left(n_{r}+1\right)} \sum_{i,-i} G_{2 m h+2 n+1,2 m h+1}^{m h+1, m n+n+1}\left(\frac{e^{i \pi} 2^{2 n}}{\lambda^{2}}\right.
\end{array}\right)
$$

where h is a positive number, $R\left(\rho_{r}, \beta_{r}\right)>-1, R\left(\mu_{k}+\frac{1}{2}\right) \geq 0$ and $\left(\frac{3}{4}-\frac{\mu_{j}}{2}\right)_{n}, \Delta\left(h, \rho_{j}\right)_{m}$ have the same meaning as before.

Proof. To prove (2.1), apply (1.3) to replace

$$
\widetilde{\omega}_{\mu_{1}, \cdots, \mu_{n}}\left[\lambda\left(x_{1} \cdots x_{m}\right)^{+n / 2}\right]
$$

on the left of (2.1) by

$$
\frac{1}{2 \pi i} \int_{C-i \infty}^{C+i \infty} 2^{n(s-1 / 2)} \frac{\Gamma\left(\frac{\mu_{1}+s}{2}+\frac{1}{4}\right) \cdots \Gamma\left(\frac{\mu_{n}+s}{2}+\frac{1}{4}\right)}{\Gamma\left(\frac{\mu_{1}-s}{2}+\frac{3}{4}\right) \cdots \Gamma\left(\frac{\mu_{n}-s}{2}+\frac{3}{4}\right)}
$$

Then, on changing the order of integration and evaluating inner integral by means of ([2], p. 284), the integral becomes

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{C-i \infty}^{c+i \infty} 2^{n(s-1 / 2)} \frac{\prod_{j=1}^{n} \Gamma\left(\frac{\mu_{j}+s}{2}+\frac{1}{4}\right)}{\prod_{j=1}^{n} \Gamma\left(\frac{\mu_{j}-s}{2}+\frac{3}{4}\right)} \lambda^{-s} \\
& \quad \times \prod_{r=1}^{m}\left\{\frac{\Gamma\left(\rho_{r}+1-\frac{h s}{2}\right) \Gamma\left(\beta_{r}+n_{r}+1\right) \Gamma\left(\alpha_{r}-\rho_{r}+n_{r}+\frac{h s}{2}\right)}{n_{r}!\Gamma\left(\alpha_{r}+\frac{h s}{2}\right) \Gamma\left(\beta_{r}+\rho_{r}+n_{r}+2-\frac{h s}{2}\right)}\right\} d s \\
& = \\
& \quad \frac{2^{1-n / 2}}{2 \pi i} \int_{C_{1}} \frac{\prod_{j=1}^{n} \Gamma\left(\frac{\mu_{j}+2 s}{2}+\frac{1}{4}\right) \prod_{r=1}^{m}}{\prod_{j=1}^{n} \Gamma\left(\frac{\mu_{j}-2 s}{2}+\frac{3}{4}\right) \prod_{r=1}^{m}} \\
& \quad \times \frac{\left\{\Gamma\left(\rho_{r}+1-h s\right) \Gamma\left(\beta_{r}+n_{r}+1\right) \Gamma\left(\alpha_{r}-\rho_{r}+n_{r}+h s\right)\right\}}{\left\{\Gamma\left(n_{r}+1\right) \Gamma\left(\alpha_{r}-\rho_{r}+h s\right) \Gamma\left(\beta_{r}+\rho_{r}+n_{r}+2-h s\right)\right\}}\left(\frac{2^{2 n}}{\lambda^{2}}\right)^{s} \\
& \quad \cdot\left\{\frac{e^{i \pi s}-e^{-i \pi s}}{2 \pi i}\right\} \Gamma(s) \Gamma(1-s) d s,
\end{aligned}
$$

where we have used the relation

$$
\Gamma(\xi) \Gamma(1-\xi)=\frac{\pi}{\sin \pi \xi}
$$

Now apply ([3], p. 4 (11) and p. 207 [1]) to evaluate the integral and so obtain (2.1).
(2.2) can be proved by proceeding on similar lines.
3. The expansions. The expansions to be established are
(3.1) $x^{\rho} \widetilde{\omega}_{\mu_{1}, \ldots, \mu_{n}}\left[\lambda x^{h / 2}\right]$
where h is a positive number and $R(\rho)>-1$.
(3.2) $x^{\rho} \widetilde{\omega}^{\prime}$

$$
{\widetilde{{ }_{\mu}^{1}},}^{, \cdots, \mu_{n}}\left[\lambda x^{-h / 2}\right]
$$

$$
=\frac{h^{-\beta-1}}{\pi 2^{n / 2}} \sum_{r=0}^{\infty} \frac{(\alpha+\beta+2 r+1) \Gamma(\alpha+\beta+r+1)}{\Gamma(\alpha+r+1)} \sum_{i,-i} \frac{1}{i} G_{2 n+2 n+1,2 h+1}^{n+1, n+n+1}
$$

$$
\times\left(\frac{e^{i \pi} 2^{2 n}}{\lambda^{2}} \left\lvert\, \begin{array}{l}
\left(\frac{3}{4}-\frac{\mu_{j}}{2}\right)_{n}, \Delta(h, \alpha-\rho), 1 \\
\Delta(h, r-\rho), 1
\end{array}\right.\right.
$$

$$
\left.\begin{array}{l}
\left(\frac{3}{4}+\frac{\mu_{j}}{2}\right)_{n}, \Delta(h,-\rho) \\
\Delta(h,-\alpha-\beta-\rho-r-1)
\end{array}\right) P_{r}^{(\alpha, \beta)}(1-2 x),
$$

$$
\begin{aligned}
& =\frac{h^{-\beta-1}}{\pi 2^{n / 2}} \sum_{r=0}^{\infty} \frac{(\alpha+\beta+2 r+1) \Gamma(\alpha+\beta+r+1)}{\Gamma(\alpha+r+1)} \sum_{i,-i} \frac{1}{i} G_{2 h+2 h+1,2 h+1}^{n+1, h+n+1} \\
& \times\left(\frac{2^{2 n} e^{i \pi}}{\lambda^{2}} \left\lvert\, \begin{array}{l}
\left(\frac{3}{4}-\frac{\mu_{j}}{2}\right)_{n}, \Delta(h, \rho-r+1), 1, \\
\Delta(h, \rho+\alpha+1), 1,
\end{array}\right.\right. \\
& \times \underset{\Delta\left(\frac{3}{4}+\frac{\mu_{j}}{2}\right)_{n}, \Delta(h, \beta+\rho+\alpha+r+2)}{\Delta(h, \rho+1)} P_{r}^{(\alpha, \beta)}(1-2 x),
\end{aligned}
$$

where h is a positive number and $R(\rho)>1$.
Proof. To prove (3.1), let

$$
\begin{align*}
f(x) & =x^{\rho} \widetilde{\omega}_{\mu_{1}, \cdots, \mu_{n}}\left[x^{h / 2} \lambda\right] \tag{3.3}\\
& =\sum_{r=0}^{\infty} C_{r} P_{r}^{(\alpha, \beta)}(1-2 x) .
\end{align*}
$$

Equation (3.3) is valid, since $f(x)$ is continuous and of bounded variation in the interval $(0,1)$ when $R(\rho) \geq-1$.

Multiplying both sides of (3.3) by $x^{\alpha}(1-x)^{\beta} P_{u}^{(\alpha, \beta)}(1-2 x)$ and integrating with respect to x from 0 to 1 , we get

$$
\begin{aligned}
& \int_{0}^{1} x^{\rho+\alpha}(1-x)^{\beta} P_{u}^{(a, \beta)}(1-2 x) \widetilde{\omega}_{\mu_{1}, \cdots, \mu_{n}}\left[\lambda x^{h / 2}\right] d x \\
& \quad=\sum_{r=0}^{\infty} C_{r} \int_{0}^{1} x^{\alpha}(1-x)^{\beta} P_{u}^{(\alpha, \beta)}(1-2 x) P_{r}^{(\alpha, \beta)}(1-2 x) d x .
\end{aligned}
$$

Now using (2.1) and the orthogonality property of Jacobi polynomials ([2], p. 285 (9) and (10)), we get

$$
\begin{align*}
& C_{u}= \frac{h^{-\beta-1}(\alpha+\beta+2 u+1) \Gamma(\alpha+\beta+u+1)}{\pi 2^{n / 2} \Gamma(\alpha+u+1)} \sum_{i,-1} \frac{1}{i} G_{2 n+2 h+1,2 h+1}^{h+1, h+n+1} \tag{3.4}\\
& \times\left(\frac{2^{2 n} e^{i \pi}}{\lambda^{2}} \left\lvert\,\left(\frac{3}{4}-\frac{\mu_{j}}{2}\right)_{n}\right., \Delta(h, \rho-u+1), 1\right. \\
& \Delta(h, \rho+\alpha+1), 1, \\
&\left(\frac{3}{4}+\frac{\mu_{j}}{2}\right)_{n}, \Delta(h, \beta+\rho+\alpha+u+2) \\
& \Delta(h, \rho+1)
\end{align*}
$$

From (3.3) and (3.4), the formula (3.1) is obtained. The expansion formula (3.2) is similarly established on applying the same procedure as above and using (2.2).

References

[1] Bhatnagar, K. P.: Two theorems on self-reciprocal functions and a new transform. Bull. Calcutta Math. Soc., 45, 109-112 (1953).
[2] Erdelyi, Magnus: Oberhetinger, Tricomi. Tables of Integral Transforms, Vol. II. McGraw-Hill, Bateman project (1954).
[3] -: Higher Transcendental Functions, Vol. I. McGraw-Hill, Bateman project (1953).

