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140. The Structure of Quasi.Minimal Sets

By Shigeo KON0
Department of Mathematics, Josai University

(Comm. by Kinjir5 KtNtGI, M... )., June 12, 1970)

1. Introduction. The concept of the quasi-minimal sets, intro-
duced by H. F. Hilmy [1], plays rather important roles for the inves-
tigation of the structure of the center of the compact dynamical
systems.

In this paper, we study mainly the three problems, i.e., (a) how a
quasi-minimal set contains minimal sets, (b) the qualities o these
minimal sets, (c) the behaviors of the orbits near these minimal sets.
Main results obtained are as follows"

Theorems 9 and 10 or (a),
Theorems 8, 12 and 13 or (b), and
Theorem 14 for (c).
2. Definitions and notations.
X" a compact metric space.
R" a real line.
r" X RX is a mapping which satisfies
1) 7 e C[X R],
2) z(x, 0)- x, and
3) 7((x, s), t)-7(x, s + t).
The triple (X,R, )is a compact dynamical system whose phase

space, phase group, and phase projection are X, R, and 7, respectively.
’(x)-{7(x, t) t e R} is the orbit passing through x e X.
+(x)--{(x, t) t>0} and .-(x)={(x, t); t_<0} are respectively

positive semi-orbit and negative semi-orbit from x e X.
A+(x)- ’+(r(x, t)) and A-(x)- ’-(7(x, t)) are the positive and

0t 0t
negative limit set o y(x), respectively.

y(x) is positively (negatively) Poisson stable if and only if
+(x) (x)# (-(x) (x)#).

y(x) is Poisson stable if and only if it is both positively and
negatively Poisson stable.

y(x) is positively (negatively) asymptotic i and only if y(x) A+(x)= and A+(x)# (7(x)A-(x)-d2 and A-(x)#).
A subset S of X is invariant if and only if ’(x)cS holds or any

xeS.
A closed and invariant set F is minimal if and only if it contains

no proper subsets which are closed and invariant.
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3. The structure of S, St and S.
Lemma 1. 7(x) is Poisson stable if and only if

A+(x)=A-(x)=y(x)
holds.

The proof of this lemma is easy.
Definition 2. We call a set S quasi-minimal if there exists a

point x of S such that (x) is Poisson stable and is everywhere dense in

S, i.e., S=y(x).
Definition 3 [2]. Let S be a quasi-minimal set.

1) A point x of S is called z-point if y+(x)=y-(x)=S.
2) A point x of S is called [-point if (a) y+(x)--S and y-(x)S or (b)

+(x)S and y-(x)=S holds.
3) A point x of S is called a-point if y+(x)S and -(x)S.

Definition 4. Let S be a quasi-minimal set.
S as follows:

S--{x; x is a -point of S},
S,={x; x is a [-point of S},
S={x; x is a a-point of S}.

1)
2)

We define S, S, and

It is known that S, S, and S are all invariant [2].
The following Proposition 4 is found in T. Saito’s paper [3].

Proposition 4. Let S be a quasi-minimal set.
If x e S, then y(x) is Poisson stable.
if x e S,, then 7(x) is

a) positively Poisson stable and negatively asymptotic, or
b) negatively Poisson stable and positively asymptotic.
Here we consider the problem whether the inverse of proposition

holds.

and
A+(x)y/(x)S,

A-(x)’-(x)S
These facts and the assumption 2) imply

S=+(x)=-(x).
Thus x e S. Q.E.D.

On the other hand

4-1) holds or not. The answer to the problem is as ollows:
Proposition 5o Let S be a quasi-minimal set.

1) (x) is Poisson stable.
xeS@= 2) (x)-S.

Proof (). We know that y(x)=S, because y/(x)=y-(x)=S.
This act and Proposition 4-1) completes the proo o (@).
(@). We know rom the assumption 1) and Lemma 1 that

(x)=A/(x)=A-(x).
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Next we give the necessary and sufficient conditions from a standpoint
of limit sets or a point of a quasi-minimal set to be -, or /-, or a-
points"

Proposition 6.
1) x e S==/(x)=A-(x)=S.
2) x e S,@==I) A+(x)=S and A-(x)S,

or 2) A+(x)S and -(x)=S.
3) x e So==:A+(x)S and A-(x)S.

Proof. 1) can be easily proved using Lemma 1 and Proposition

2) Let x be a point of S,. Then, a) y/(x)=S and -(x)S, or b)

y/(x)S and y-(x)=S. We shall prove only the case a). The cse b)
can be proved similarly. In the case a), y(x) is positively Poisson
stable and negatively asymptotic, so that

#-(x)/(x)=(x).
The closedness and invariantness o S imply that

S=/(x)(x)S,
which means that y(x)=S. Thus we know that

A/(x)=S and A-(x)S. (1)
Conversely, let us assume that there exists a point x of S which satis-
fies (1). Then

S=A/(x)/(x)S,
so that

y+(X) S. ( 2

But y-(x)S, or if y---(x)’=S, then x e S, so that A-(x)=S by Propo-
sition 6-1), which contradicts the assumption (1). Thus x e S,.

3) The act that 1), 2) and 3) are mutually exclusive proves 3).
Q.E.D.

Proposition 4 tells us the nature of the orbits in S and S,. Now
we study structure of S.

Proposition 7. x
Proof. As So is invariant [2], y(x)cSo or atl x e So. Let x be a

point of S.
Then (Vy e A/ (x))

{AA:(y)(yA/(x)S and
(y) (- A/ (x) Z.

These facts imply that y e S. Thus A/(x) S. We can prove simil-

arly that A-(x)cS. Therefore

y(x)--y(x) [J A+(x) U A-(x)S.

Theorem 8. The open kernel of So is empty.
Q.E.D.
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Proof. If S-, Theorem 8 is trivial. Let us assume that S,#.
As S is invariant [2],

(x)SS ( 1 )
for any x e S. On the other hand, if x e S, then by Proposition 5

(x)-S. ( 2 )
We know by (1) and (2)

that is, S is everywhere dense in S. Therefore, for any point x of
S, and or any neighborhood U(x) of this x, U(x)S#. Thus no
points of S, are interior points, so that the open kernel of S, is empty.

Q.E.D.
A quasi-minimal set S is compact and invariant, so S contains at

least one minimal set [2]. But it is an important problem that in
what way S contains minimal sets. We give the answer to this pro-
blem as follows.

Theorem 9. A quasi-minimal set S is minimal if and only if S

Proof. If S is minimal, then y(x) is Poisson stable and y(x)-S
for any xeS. This means that if xeS, then xeS. Thus SS.
But, of course S S. Therefore S=S. Conversely, let us assume that

S-S. If S is not minimal, then S contains a minimal set M. MS
implies that y(xj-S for all x e M by Proposition 5. But y(x)--M for
all x e M, because M is closed and invariant. Further MS. Thus
we arrive at a contradiction. Therefore S is minimal. Q.E.D.

Corollary 9.1. A quasi-minimal set S is not minimal if and only

Theorem 10. I/a quasi-minimal set S is not minimal, then S
contains all minimal sets contained in S.

Proof. Let M be a minimal set contained in S. For any y e M,
(y)=MS. This shows that M S (Proposition 5). Thus
M S,
one o the following two cases holds"

a) +(x)=S and -(x)S,
b) +(x)S and -(x)=S.
The case a), however, never occurs because it contradicts the fact that

+(x)c(xMS. Also the case b) never occurs because of the
similar reason as in the case a). Thus we know MS,=, which
implies thatMS.. Q.E.D.

Corollary 10.1. A quasi-minimal set S is not minimal if and
only

If a quasi-minimal set S is not minimal, then S contains all mini-
real sets contained in S. Here we study the behaviors of orbits near
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the minimal sets.
For this purpose, we first give some definitions and notations.
U is an arbitrary neighborhood of a minimal set of the dynamical

system (X, R, ). We classify U\F as follows"
NS-{x x e U\F, C/(x) U},
N--{x x e U\F, C-(x) U},
G=x; x e U\F, C/(x) U, C-(x) U},
Nv N5 M NS.

Definition 10. We call a minimal set F isolated, if there exists
a neighborhood of F which contains no minimal sets other than F.

Definition 11 [4]. An isolated minimal set F is called a saddle
minimal set, if there exists a neighborhood U of F such that Gv fl F .

Theorem 12. Let S be a quasi- minimal set which is not minimal.
1) All isolated minimal sets contained in S are saddle minimal sets.
2) If S contains a minimal set which is not isolated, then S contains
infinitely many minimal sets.
3) If S contains a finite number of minimal sets, then these minimal
sets are all saddle minimal sets.

Proof. 1) S is compact, invariant, and not minimal, so there
exists a compact minimal set which is a proper subset of S. But it is
known that if a proper subset F of S is an isolated minimal subset,
then F is a saddle minimal set [4].
2) is directly proved by Definition 10.
3) is proved by Theorem 12-1) and the fact that all minimal sets
contained in S are isolated in this case. Q.E.D.

Theorem 1:o If a quasi-minimal set S is not minimal, then all
the minimal sets contained in S are nowhere dense.

Proof. The open kernels of minimal sets contained in S are sub-
sets of S. (Theorem 10), so that these open kernels are all empty
(Theorem 8). This result completes the proof because minimal sets
are closed. Q.E.D.

The behaviors of orbits in S and S are known (Proposition 4).
But it remains an open problem to determine the behaviors of orbits
in S., as far as I know. The following Theorem 14 is a result of an
attempt to solve this problem.

Let F be an isolated minimal set contained in S. There exists an
open neighborhood U of F, which contains no minimal sets other than
F.

V=SN U is a relative neighborhood of F in S.. Let I7 be the
relative closure of V in So. Then

V\F-(Sofl U)\F
(So N Ng) U (So N Nz) U (So N Gv),
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because U\F-N5 [_J N5 U Gv. Here we take n, n, n, g as follows"
n.--Sf3 N,
n,=SfNs,
n=n n,
g=SG.

Then VF n n g.
The ollowing facts are valid by the compactness of U [4]"

1) if x e NNv, then y(x) is positively asymptotic and y-(x)(X U)
#.
2) if x e NNv, then y(x) is negatively asymptotic and y +(x) (X U)
#.

Therefore, if x e nn, then x e (NN)S, so that y(x) is
positively asymptotic. On the other hand,

[y-(x)(X U)]S-y-(x)(SV), while
-(x) (x u) s- [-(x) s] (x u)
y-(x) (X U)#, there2ore y-(x) (S V)#.

Similarly, if x e nn, then y(x) is negatively asymptotic and
+(x)(sv)#.

The ollowing two propositions are clear"
1) if x e n, then y(x)VF,
2) if xeg, then y+(x)(SV)# and y-(x)(SV)#.

Finally, it is known that if x e F, then y(x)F and y(x) is Poisson
stable.

We summarize above results as follows"
Theorem 14. Let S be a quasi-minimal set which is not minimal.

Let F be an isolated minimal set contained in S.
Then, there exists a relative neighborhood V such that the orbits

passing a point of V, the relative closure of V in S, are classified as
follows"
1) if x e F, then y(x) is Poisson stable and y(x)F,
2) if x e nn, then 7(x) is positively asymptotic and -(x) (S ).
3) if x e nn, then y(x) is negatively asymptotic and y+(x) (S).
4) if x e n, then y(x) VF.
5) if x e g, then 7+(x) (SV)# and y-(x) (SV)#.
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