139. On Radicals of Semigroups with Zero. I

By Ferenc A. SZÁSZ Budapest

(Comm. by Kinjirô KUNUGI, M. J. A., June 12, 1970)

The term "semigroup" means in this note always a semigroup with zero element (see [3]). Several concrete types of radicals for semigroups were proposed (see for instance [2], [3], [5]–[9] and [11]). By a ring theoretical analogy (see [4]) also a general theory of radicals for semigroups can be developed.

For any class C of semigroups a C-semigroup S means a semigroup belonging to C. If a semigroup S has a C-ideal C(S) such that C(S) contains any further C-ideal of S, then C(S) is called the C-radical of S. Semigroups S with C(S)=0 are called C-semisimple. A class R of semigroups is called *radical*, if the following conditions are satisfied:

1) **R** is homomorphically closed/not only with respect to forming of Rees factor semigroups/

2) in any semigroup S there exists the *R*-radical R(S)

3) the Rees factor semigroup S/R(S) is *R*-semisimple.

The aim of this note is to generalize for semigroups some ringtheoretical results of [1] and [10].

Theorem 1. For any radical class R of semigroups, and for any ideal J of a semigroup S, the R-radical R(J) of J is an ideal of S.

Proof. Assuming that R(J) is not an ideal of S, there exists an element $s \in S$ satisfying either $sR(J) \not\subseteq R(J)$ or $R(J) s \not\subseteq R(J)$. If $sR(J) \not\subseteq R(J)$, then the union $U = sR(J) \cup R(J)$ properly contains R(J) and $U \subseteq J$ holds. By $JU = JsR(J) \cup JR(J) \subseteq R(J)$ and $UJ \subseteq U$ this union U is an ideal of J. Being J/R(J) R-semisimple, U/R(J) is not an R-semigroup.

By $\varphi_1(r) = sr \cup R(J)$ $(r \in R(J))$ is given a mapping of R(J) onto U/R(J), which by the associativity and

$$\varphi_1(r_1, r_2) = sr_1r_2 \cup \boldsymbol{R}(\boldsymbol{J}) = \boldsymbol{R}(\boldsymbol{J})$$

$$= sr_1s, r_2 \cup \boldsymbol{R}(\boldsymbol{J}) = \varphi_1(r_1), \varphi_1(r_2)$$

is a homomorphism. Being R(J) radical and U/R(J) nonradical nonzero semigroups, respectively, this contradiction shows $SR(J) \subseteq R(J)$. Similarly can be verified also $R(J)S \subseteq R(J)$.

Corollary 2. With the above notations $R(J) \subseteq J \cap R(S)$ holds. Proof. R(J) is an *R*-ideal of *S*, contained in R(S).

Corollary 3. Any ideal of an R-semisimple semigroup is again

R-semisimple.

Let now $C=C_1$ an arbitrary, homomorphically closed class of semigroups. Assume that for the ordinal numbers $\alpha < \beta$, the classes C_{α} are already defined. Let C_{β} be the class of all semigroups every non-zero Rees factor semigroup of which contains a non-zero ideal belonging to a class C_{α} for some $\alpha < \beta$.

Furthermore let LC_1 be the union of all classes C_{α} .

A subsemigroup A of S is called accessible, if there exists a finite chain of subsemigroups A_1, A_2, \dots, A_{n-1} of S such that

 $A = A_0 \subset A_1 \subset A_2 \subset \cdots \subset A_{n-1} \subset A_n = S_1$

and A_i is an ideal of A_{i+1} for $i=0, 1, 2, \dots, n-1$. Such a minimal n is the index of A in S.

Proposition 4. For any homomorphically closed class $C = C_1$ of semigroups, and for the above class LC_1 any non-zero LC_1 -semigroup S has a nonzero accessible subsemigroup A contained in C_1 .

Proof. Being S a set, by $S \in UC_{\alpha}$ there is an ordinal number α with $S \in C_{\alpha}$ for some α . Assume α to be minimal. We prove the existence of a desired A by induction on α . If $\alpha = 1$, then $S \in C_1$, and let A be S itself. Assume that our assertion is verified for all semigroups T from C_{β} with $\beta < \alpha$. If $S \in C_{\alpha}$, and α is minimal, then any non-zero factor semigroup of S, and thus also S itself, contains a non-zero ideal J contained in C_{β} for some $\beta < \alpha$. By induction J has a non-zero accessible subsemigroup A in C_1 . But A is a non-zero accessible subsemigroup of S, contained in C_1 .

Proposition 5. For any non-zero accessible subsemigroup A of a semigroup S with $A \in C_1 = C$, the ideal (A) of S generated by A_1 is contained in C_n for some finite n.

Proof. Let *n* be the index of *A* in *S*. We proceed by induction on *n*. If n=1, then $(A)=A \in C_1$. Assume that our proposition is proved for all accessible subsemigroups of index < n. Let now A^* be the ideal of A_{n-1} generated by *A*. By induction A^* lies in C_{m-1} for some finite *m*, and $A^* \subseteq (A) \subseteq A_{n-1}$. Thus A^* is an ideal of (*A*), and by $(A)=A \cup AS \cup SA \cup SAS$ we have also $(A)=A^* \cup A^*S \cup SA^* \cup SA^*S$.

We shall prove $(A) \in C_m$. Let (A)/B be any non-zero Rees factor semigroup of (A). If $A^* \not\subseteq B$, then (A)/B with respect to forming of Rees factor semigroups has the nonzero ideal $(A^* \cup B)/B \cong A^*/A^* \cap B$. The righthand side of this isomorphism-relation is a homomorphic image of A^* from the class C_{m-1} , and thus $A^*/A^* \wedge B \in C_{m-1}$, being every C_{α} closed. Then (A)/B has a non-zero ideal in C_{m-1} .

Consequently we assume $A^* \subseteq B$. If $A^*S \not\subseteq B$, then there is an element $s \in S$ such that $A^*s \not\subseteq B$. It is easy to prove that $(A^*s \cup B)/B$ is a non-zero twosided ideal of (A)/B. Furthermore $\varphi_2 a = as \cup B(a \in A^*)$

596

maps A^* onto the factor-semigroup $(A^*s \cup B)/B$, and this mapping φ_2 is by

$$\varphi_2 a_1 a_2 = a_1 a_2 s \cup B \subseteq A^* A^* S \cup B \subseteq A^* (A) \cup B \subseteq B$$

and by

 $\varphi_2 a_1 \cdot \varphi_2 a_2 \subseteq A^* S A^* S \cup B \subseteq A^* (A) \cup B \subseteq A^* \cup B = B$

a homomorphism. Consequently $(A^*s \cup B)/B$ is a non-zero ideal of (A)/B in C_{m-1} . Similarly it can be shown that $(sA^* \cup B)/B$ is a non-zero ideal of (A)/B, contained in C_{m-1} , for some $s \in S$, if $SA^* \not\subseteq B$.

In what follows, we assume $A^* \cup SA^* \cup A^*S \subseteq B$. By $(A) \neq B$ holds $SA^*S \not\subseteq B$, and thus there exist elements $s \in S_1 t \in S$ such that $sA^*t \not\subseteq B$. It can be verified, that $(sA^*t \cup B)/B$ is an ideal of (A)/B. Furthermore by $\varphi_3 a = sat \cup B$ $(a \in A^*)$ the semigroup A^* is homomorphically mapped onto $(sA^*t \cup B)/B$, being $\varphi_3 a_1 a_2 = B = \varphi_3 a_1 \cdot \varphi_3 a_2$. Consequently (A) lies in a class C_m for some finite m.

Theorem 6. The class LC_1 , determined by any homomorphically closed class $C_1 = C$ of semigroups, coincides with the class C_{ω_0} , where ω_0 is the first infinite ordinal number.

Proof. Obviously $C_{\omega_0} \subseteq LC_1$ holds. Furthermore, if S is any nonzero semigroup from LC_1 , then any non-zero Rees factorsemigroup S/T of S lies in LC_1 , and S/T contains by Proposition 4 a nonzero accessible subsemigroup A, lying in C_1 . By Proposition 5 S/T contains a nonzero ideal (A)/T contained in C_m for a finite m. Consequently $LC_1 = C_{\omega_0}$.

Theorem 7. If C_1 is a homomorphically closed and hereditary class of semigroups (i.e. any ideal of a semigroup from C_1 lies again in C_1), containing all nilpotent semigroups, then $LC_1 = C_2$ holds.

Proof. If S is any semigroup from C_3 , then any non-zero factor semigroup $S^1 = S/T$ of S contains a nonzero ideal J belonging to C_2 . Thus also J contains a nonzero ideal K lying in C_1 . If (K) is the ideal of S' generated by K, then $K \subseteq (K) \subseteq J$. Being

 $(K)^{3} \subseteq J(K \cup KS' \cup S'K \cup S'KS')J \subseteq K$

and C_1 a hereditary class, one has $(K)^3 \in C_1$ and $(K) \neq 0$. If $(K)^3 \neq 0$, then it is a nonzero C_1 -ideal of S'. In the case $(K)^3 = 0$ and $(K)^2 \neq 0$ obviously $(K)^2 \in C_1$ being $(K)^2$ nilpotent. If $(K)^2 = 0$, then also $(K) \in C_1$, and thus S' has a nonzero C_1 -ideal. Consequently $LC_1 = C_2$.

It would be interesting to investigate that in what case LC_1 is a radical class for a homomorphically closed class C_1 of semigroups. (A homomorphism generally cannot be given by a Rees factor semigroup.)

References

 T. Anderson, N. Divinsky, and A. Sulinski: Hereditary radicals in associative and alternative rings. Canad. J. Math., 17, 594-603 (1965).

F. A. Szász

- [2] J. Bosák: On radicals of semigroups. Mat. Časopis, 18, 204-212 (1968).
- [3] A. H. Clifford and G. B. Preston: The Algebraic Theory of Semigroups. Providence (1961, 1967).
- [4] N. Divinsky: Rings and Radicals. London (1965).
- [5] H. J. Hoehnke: Structure of semigroups. Canad. J. Math., 18, 449-491 (1966).
- [6] J. Luh: On the concepts of radical of semigroups having kernel. Portugaliae Math., 19, 189-198 (1960).
- [7] H. Seidel: Über das Radikal einer Halbgruppe. Math. Nachrichten, 29, 255-263 (1963).
- [8] L. N. Sherrin: On general theory of semigroups. Mat. Sbor., 53, 367-386 (1961) (in Russian).
- [9] R. Shulka: Note on the Ševrin radical in semigroups. Mat. Časopis, 18, 57-58 (1968).
- [10] A. Sulinski, R. Anderson, and N. Divinsky: Lower radical properties for associative and alternative rings. Jour. London Math. Soc., 41, 417-424 (1966).
- [11] F. Szász: Radikalbegriffe für Halbgruppen mit Nullelement, die dem Jacobsonschen ringtheoretischen Radikal ähnlich sind. Math. Nachrichten, 34, 157-161 (1967).
- [12] —: An observation on the Brown-McCoy radical. Proc. Japan Acad., 37, 413-416 (1961).