181. Continuity of Stochastic Processes on Metric Spaces

By Takayuki KAWADA Kobe College of Commerce

(Comm. by Kinjirô KUNUGI, M. J. A., Sept. 12, 1970)

1. After A. N. Kolmogorov had presented the continuity condition of stochastic processes ([5]), several generalizations have been considered (e.g. [1]-[4]). But H. Cramér's idea in [1] permits us to obtain the continuity conditions in the more general situations; Let $\{x(t, \omega); t \in S\}$ be stochastic processes, based on a probability space (Ω, \mathcal{B}, P) , of which parameter t runs over a compact metric space (S, d), and of which value is taken in a complete metric space (M, r). Here their metrics are d and r, respectively. Denote by $N(\varepsilon)$ the minimal number of ε -net of the space $S.^{*}$ Then we establish the followings:

Theorem 1. Suppose that

(1) $P[r(x(t), x(s)) \ge g(d(t, s))] \le q(d(t, s)),$

where g(h) and q(h) are even, non-decreasing functions in h>0, and that

$$(2) \qquad \qquad \sum_{n=1}^{\infty} g(2^{-n}) < \infty, \qquad \sum_{n=1}^{\infty} N^2(2^{-n-1}) \cdot q(2^{-n+2}) < \infty.$$

Then the stochastic processes have continuous version.

Theorem 2. Suppose (1) above and that

$$(3) \qquad \sum_{k=1}^{\infty} g(2^{-n-k}) < C \cdot g(2^{-n}), \qquad \sum_{n=1}^{\infty} N^2(2^{-n-1}) \cdot q(2^{-n+2}) < \infty,$$

and

(4) $g(4h) < C' \cdot g(h)$ for sufficiently small h,

where n is any positive integer, and C and C' are some positive constants. Then the stochastic processes have g-Hölder continuous version.

2. By A_n , we denote the elements of 2^{-n} -net; $A_n = \{t_n^k; k=1, 2, \dots, N(2^{-n})\}, n=1, 2, 3, \dots$, and we set $D = \bigcup_{n=1}^{\infty} A_n$. By F, we define the space of all *M*-valued, non-random functions, and by F_n the elements of F such that

$$\begin{split} F_n = & \{ f(t) \ ; \ r(f(x), f(y)) \leq g(d(x, y)), \\ & \text{for} \quad (x, y), x \in A_n, y \in A_{n+1} \text{ and } d(x, y) \leq 2^{-n+2} \}, \end{split}$$

where g(h) is one cited in (1). Further, we set $U_n = \bigcap_{j=n}^{\infty} F_j$, and

*) $\log N(\varepsilon)$ is called ε -entropy of the space S.

 $U = \bigcup_{n=1}^{\infty} U_n$. The function $f_D(t)$ is denoted as the restriction of $f(t) \in F$ to D, and $f_D(t+)$ means the limiting value of $\{f_D(t_n), t_n \in A_n, d(t, t_n) \le 2^{-n+1}, n=1, 2, \cdots\}$, if it exists. Then we have;

Lemma 1. If $f(t) \in U$, $f_D(t+)$ exists uniquely and independently of the sequence $\{t_n\}$.

Proof. For any positive $\varepsilon > 0$, there exists a number n_0 such that $\sum_{k=n_0}^{\infty} g(2^{-k}) < \varepsilon$. For a sequence $\{t_n \in A_n, d(t, t_n) \le 2^{-n+1}, n=1, 2, 3, \cdots\}$, and for any $p > q > 1 + \max(N, n_0)$ where N is the smallest number satisfying $f(t) \in U_N^{**}$, we estimate

$$\begin{split} r(f_D(t_q), f_D(t_p)) &\leq \sum_{l=q}^{p-1} r(f_D(t_l), f_D(t_{l+1})) \leq \sum_{l=q}^{p-1} g(d(t_l, t_{l+1})) \\ &\leq \sum_{l=q}^{\infty} g(2^{-l+2}) \leq \sum_{l=n_0}^{\infty} g(2^{-l}) < \varepsilon, \end{split}$$

since $d(t_l, t_{l+1}) \le d(t_l, t) + d(t, t_{l+1}) \le 2^{-l+1} + 2^{-l} \le 2^{-l+2}$, and $t_l \in A_l, t_{l+1} \in A_{l+1}$. Thus, we have

$$\lim_{l\to\infty} r(f_D(t_l), f_0) = 0.$$

This f_0 does not depend on the sequence; In fact, if we have a different value f'_0 for another sequence $\{t'_n; t'_n \in A_n, d(t, t'_n) \le 2^{-n+1}, n=1, 2, 3, \cdots\}$, we can observe that, since $d(t_n, t'_{n+1}) \le d(t_n, t) + d(t, t'_{n+1}) \le 2^{-n+1} + 2^{-n} \le 2^{-n+2}$,

$$r(f_0, f'_0) \le r(f_0, f_D(t_n)) + r(f_D(t_n), f_D(t'_{n+1})) + r(f_D(t'_{n+1}), f'_0)$$

$$\le 2\varepsilon + g(2^{-n+2}),$$

for any $\varepsilon > 0$ and for sufficiently large *n*. This proves the Lemma.

Lemma 2. For $f(t) \in U$, we set $h(t) = f_D(t+)$. Then h(t) is continuous in t.

Proof. We shall show by contradiction; Assume that there exists a sequence $\{x_n; x_n \in S\}$ converging to t such that $\lim_{n \to \infty} r(h(x_n), h(t)) \neq 0$. For each integer m, we can find a point x_{n_m} in the sequence $\{x_n\}$ satisfying $d(t, x_{n_m}) \leq 2^{-m}$, and further for each x_{n_m} , there exists a sequence $\{y_q(n_m); y_q(n_m) \in A_q, d(x_{n_m}, y_q(n_m)) \leq 2^{-q}, q = 1, 2, \cdots\}$, for which we have $\lim_{q \to \infty} r(f_D(y_q(n_m), h(x_{n_m})) = 0$, due to Lemma 1. Since

 $d(t, y_m(n_m)) \le d(t, x_{n_m}) + d(x_{n_m}, y_m(n_m)) \le 2^{-m} + 2^{-m} = 2^{-m+1},$ and $y_m(n_m) \in A_m$, we have $\lim r(f_D(y_m(n_m)), h(t)) = 0$. Further we esti-

and $y_m(n_m) \in A_m$, we have $\lim_{m \to \infty} r(f_D(y_m(n_m)), h(t)) = 0$. Further we estimate

$$\begin{aligned} r(h(t), h(x_{n_m})) &\leq r(h(t), f_D(y_m(n_m))) + r(f_D(y_m(n_m)), h(x_{n_m})) \\ &\leq r(h(t), f_D(y_m(n_m))) + \sum_{q=m}^{Q-1} r(f_D(y_p(n_m)), f_D(y_{q+1}(n_m))) \\ &+ r(f_D(y_Q(n_m)), h(x_{n_m})). \end{aligned}$$

Here, by making the integer Q so large, we have for any $\varepsilon > 0$,

No. 7]

^{**)} We shall not repeat below the indication of the number to which class of U a function f(t) belongs, when it is clear in the context.

T. KAWADA

[Vol. 46,

$$\sum_{q=m}^{Q-1} r(f_D(y_q(n_m)), f_D(y_{q+1}(n_m))) + r(f_D(y_Q(n_m)), h(x_{n_m}))$$

$$\leq \sum_{q=m}^{\infty} r(f_D(y_q(n_m)), f_D(y_{q+1}(n_m))) + \varepsilon.$$

Further, since $d(y_q(n_m), y_{q+1}(n_m)) \le d(y_q(n_m), x_{n_m}) + d(x_{n_m}, y_{q+1}(n_m)) \le 2^{-q} + 2^{-q-1} \le 2^{-q+2}$, it holds

$$\sum_{q=m}^{\infty} r(f_D(y_q(n_m)), f_D(y_{q+1}(n_m))) \leq \sum_{q=m}^{\infty} g(2^{-q+2}).$$

As a result, we have

$$r(h(t), h(x_{n_m})) \leq r(h(t), f_D(y_m(n_m))) + \sum_{k=m-2}^{\infty} g(2^{-k}),$$

which implies, for sufficiently large m, a contradiction to the hypothesis above.

Lemma 3. Let $\{x(t, \omega); t \in S\}$ be stochastic processes satisfying the conditions (1) and (2). Then

$$P[x(t, \omega) \in U] = 1.$$
Proof. For the complement of F_n, F_n^c we have
$$P[x(t, \omega) \in F_n^c] \leq P[\max_{\substack{(t,s) \leq 2n + x \\ d(t,s) \leq 2^{-n+2}}} r(x(t), x(s)) > g(d(t, s))]$$

$$\leq \sum_{\substack{(t,s) \in A_n \times A_{n+1} \\ d(t,s) \leq 2^{-n+2}}} P[r(x(t), x(s) > g(d(t, s))]$$

$$\leq N(2^{-n}) \cdot N(2^{-n-1}) \cdot q(2^{-n+2}).$$

Since we have $U_n^c = \bigcup_{j=n}^{\infty} F_j^c$, and

$$egin{aligned} P[x(t,\omega)\in U_n^c]&\leq\sum_{j=n}^\infty P[x(t,\omega)\in F_j^c]\ &\leq\sum_{j=n}^\infty N^2(2^{-n-1})\cdot q(2^{-n+2}), \end{aligned}$$

we obtain

$$P[x(t, \omega) \in U^c] = \lim_{n \to \infty} P[x(t, \omega) \in U^c_n] = 0, \ P[x(t, \omega) \in U] = 0.$$

3. Proof of Theorem 1. For each t in S, we define ω -sets, V_t and W_t respectively as follows;

$$V_t = \{\omega; x(t, \omega) = x_D(t+, \omega)\},\$$

$$W_t = \{\omega; x(t, \omega) \neq x_D(t+, \omega)\}.$$

We shall prove that

$$P[V_t] = 1$$
, and $P[W_t] = 0$.

For $t \in S$, we choose a sequence $\{t_k; t_k \in A_k, d(t, t_k) \le 2^{-k+1}, d(t, t_{k+1}) \le d(t, t_k); k=1, 2, \dots\}$. Then, due to Lemmas 1 and 3, we have $P[r(x(t), x(t_k)) \ge g(d(t, t_k))] \le q(d(t, t_k))$,

and

$$\lim_{k\to\infty} r(x(t_k,\omega), x_D(t+,\omega)) = 0,$$

with probability one; i.e. for any $\varepsilon > 0$ and any $\delta > 0$, and for some integer K it holds for every k > K

786

 $P[r(x(t_k), x_D(t+)) > \delta/2] \leq \varepsilon.$

We set, for this δ , $m_{\delta} = \min \{l; g(d(t, t_l)) < \delta/2\}$. Then we estimate for every $j > \max(m_{\delta}, K)$,

$$P[r(x(t), x(t_j)) > \delta/2] \leq q(d(t, t_j)).$$

Hence

$$P[r(x(t), x_D(t+)) > \delta] \leq P[r(x(t), x(t_j)) > \delta/2] + P[r(x(t_j), x_D(t+)) > \delta/2] \leq q(d(t, t_j)) + \varepsilon.$$

Thus we get

$$P[r(x(t), x_D(t+)) > \delta] = 0,$$

 $P[V_t] = 1.$

Clearly, $V_t \cap W_t = \emptyset$, and therefore $P[W_t] = 0$. For every t in S and ω , we define

$$y(t, \omega) = egin{cases} x_{\scriptscriptstyle D}(t+, \omega) \ ; \ \omega \in V_t, \ lpha \in M \ ; \ \omega \in W_t. \end{cases}$$

It is observed that the stochastic processes $\{y(t, \omega)\}$ is equivalent to the $\{x(t, \omega)\}$ and $y(t, \omega)$ is continuous in t with probability one. The proof of Theorem 1 is completed.

4. Proof of Theorem 2. At first we remark that the condition(3) implies (2). In fact, it is obvious due to the following;

$$\sum_{k=1}^{\infty} g(2^{-k}) = \sum_{k=1}^{n} g(2^{-k}) + \sum_{k=n+1}^{\infty} g(2^{-k}) \leq \sum_{k=1}^{n} g(2^{-k}) + C \cdot g(2^{-n}).$$

This implies the sample-continuity. Next we estimate

$$P\left[\max_{\substack{t_n \in A_n, t_{n+1} \in A_{n+1} \\ d(t_n, t_{n+1}) \leq 2^{-n+2}}} r(x(t_n), x(t_{n+1})) > g(d(t_n, t_{n+1}))\right]$$

$$\leq \sum_{\substack{t_n \in A_n, t_{n+1} \in A_{n+1} \\ d(t_n, t_{n+1}) \leq 2^{-n+2}}} P[r(x(t_n), x(t_{n+1})) > g(d(t_n, t_{n+1}))]$$

$$\leq N^2(2^{-n-1}) \cdot q(2^{-n+2}).$$

By (3) and Borel-Cantelli lemma, there exists a number $\nu(\omega)$ with probability one such that, for any $n > \nu(\omega)$ and for any pair (t_n, t_{n+1}) , $d(t_n, t_{n+1}) \le 2^{-n+2}$, it holds

$$r(x(t_n), x(t_{n+1})) \leq g(d(t_n, t_{n+1})) \leq g(2^{-n+2}).$$

We shall prove that for a $t_m \in A_m$ satisfying $d(t_m, t_n) \leq 2^{-n+2}, t_n \in A_n$, and $m > n > \nu(\omega)$, it holds

(5) $r(x(t_m), x(t_n)) \le C'' \cdot g(2^{-n+1}),$ where C'' is some positive constant. For such t_m , we can find a sequence $\{t_l; t_l \in A_l, d(t_m, t_l) \le 2^{-l}; l=n, n+1, n+2, \cdots, m\}.$ Therefore we get the following estimate; Since $d(t_l, t_{l+1}) \le 2^{-l+1},$

$$r(x(t_m), x(t_n)) \leq \sum_{k=0}^{m-n-1} r(x(t_{n+k+1}), x(t_{n+k})) \leq \sum_{k=0}^{\infty} g(2^{-n-k+1})$$
$$\leq g(2^{-n+1}) + g(2^{-n}) + C \cdot g(2^{-n}) \leq C'' \cdot g(2^{-n+1}).$$

Thus (5) is verified. Further (5) holds for any t in S satisfying $d(t, t_n) \leq 2^{-n+1}$, $t_n \in A_n$. In fact, taking a sequence $\{t_p; t_p \in A_p, d(t, t_p) \leq 2^{-p}\}$

787

T. KAWADA

 $p=1,2,\cdots$ }, we see that, for any $\varepsilon >0$, $r(x(t_p), x(t)) < \varepsilon$ for sufficiently large p, and that, since for $p>n>\nu(\omega)$, $d(t_p, t_n) \le d(t_p, t) + d(t, t_n) \le 2^{-p} + 2^{-n+1} \le 2^{-n+2}$, it holds for sufficiently large p

$$r(x(t), x(t_n)) \leq r(x(t), x(t_p)) + r(x(t_p), x(t_n))$$

$$\leq \varepsilon + C'' \cdot g(2^{-n+1}).$$

This implies that (5) holds even for $t \in S$ satisfying $d(t, t_n) \leq 2^{-n+1}$, and $n > \nu(\omega)$. Using this fact, we shall show g-Hölder continuity. Set a number $\delta(\omega) = 2^{-\nu(\omega)}$. For any pair of points (t, s) such that $d(t, s) < \delta(\omega)$, there exists an integer n satisfying

 $n > \nu(\omega)$, and $2^{-n-1} \le d(t,s) < 2^{-n}$.

On the other hand, we can find a $t_n \in A_n$ satisfying $d(t, t_n) \le 2^{-n}$. Since $d(t_n, s) \le d(t_n, t) + d(t, s) \le 2^{-n} + 2^{-n} = 2^{-n+1}$, we have

$$egin{aligned} r(x(t), x(s)) &\leq r(x(t), x(t_n)) + r(x(t_n), x(s)) \ &\leq C'' \cdot g(2^{-n+1}) + C'' g(2^{-n+1}) \ &\leq 2C'' g(4 \cdot 2^{-n-1}) \ &\leq 2C'' g(4d(t, s)). \end{aligned}$$

Thus we obtain with probability one, for $d(t,s) < \delta(\omega)$, due to (4) $r(x(t), x(s)) \leq C'g(d(t,s))$,

where C' = 2C''. This proves Theorem 2.

References

- Cramér, H., and M. R. Leadbetter: Stationary and Related Stochastic Processes. Wiley, New York (1967).
- [2] Jadrenko, J. M.: Local properties of sample functions of random fields. Visnik Kiev Univ. Ser. Math. Meh., 103-112 (1967) (in Ukrainian), MR (1969) #1732.
- [3] Leadbetter, M. R., and E. W. Weissner: On continuity and other analytic properties of Stochastic process sample functions. Proc. Amer. Math. Soc., 22, 291-294 (1969), MR (1970) #4921.
- [4] Loève, M.: Probability Theory (2nd-edit.). Van Nostrand, New York (1963).
- [5] Slutsky, E.: Alcune prosizioni sulla teoria della funzioni aleatorie. Giorn. Ist. Ital. Attuari, 8, 193-199 (1937).