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Let X be a compact Hausdorff space and let A be a function
algebra on X. Throughout this paper, ¢ will be a fixed multiplicative
linear functional on A which admits a unique representing measure m.
Further we assume that the Gleason part of ¢ isnon trivial. We denote
by A, the maximal ideal associated with ¢; A, ={fecA: ¢(f)=0}
Let H:=H*dm) be the closure [A], of A in L*=L*dm). We put

H= { feH? ;I f dm:O} . We shall refer to Browder [1] for the abstract

function theory in this situation.

Let M be a closed subspace of H2.. M is called simply invariant
if [AOM]ZgM . We call M complementary invariant if H*©M, the
orthogonal complement of M in H? is simply invariant. The purpose
of this paper is a characterization of the complementary invariant
subspace.

It is well known that L? admits the orthogonal decomposition
L*=H*®H?, where the bar denotes the complex conjugation. We
denote by P the orthogonal projection of L? onto H? As Wermer has
shown, there exists an inner function Z such that H:=ZH?. (See [1]
Lemma 4.4.3 for our situation.) We define the backward shift oper-
ator T on H? by

f—\fdm
Tf= —

Theorem. The complementary invariont subspaces of H? are

precisely the subspaces of the form

P[Tq-H7,
where q is an tnner function. q is determined by the subspace up to
a constant factor.

Proof. Let M be a complementary invariant subspace of H2.
Then N=H*©M is a simply invariant subspace of H?.. Therefore, by
the generalized Beurling theorem (for instance, see [1] Theorem 4.3.5),
N has the form N=qH? where ¢ is inner. For simplicity, we put

h=Tq. Evidently h e LN H* Since Ide:O and ¢ is inner, we

(f e HY).

have
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forevery fe H®. Thus h | qH*=N. Hence he M=H*©N. Wenext
show that MDP[h-H?]. Let fe N. SinceN is A-invariant and ke M,
we have (f, h§)=(gf, h)=0 for all ge A. Thus (f, P(hd)=(f, h§)=0
for all g e H>.. Hence NC H*OP[h-H?] and so MDP[h-H?. Let now
f e MOPIh-H?]. Then, for all g ¢ H?, we have
0=(P(d), /)= (hg, f)=( h, 9

{7 L )= ) foin=( 1]

q—fqdm
(h, af) = (——— qf) —1,27)[adm-(1, Zap)=0

Z
Thus %f_LH% and %f_e a2, so %fe H:. Therefore fe —%Hﬁquz

=N. ButfeM|N. Hence f=0 a.e., so M=P[h-H?.

Conversely, suppose that M=P[Tq-H?] for some inner function q.
We show that M is complementary invariant. By the generalized
Beurling theorem, it suffices to see that H*SM has the form ¢q.H?.
Clearly qH*c H®. If fe H? then

q—fqdm
(af, P(Tq-g)=(af, Tq-§)= (qf ; ——Tg)

=/, 20— [admiaf, Z)=0 (vg < H).
Hence qH*CH*©M. Next, suppose that fe{H*©OM}©qH*. Since
f.1 M, we have

q—fqdm
0=(f,P(Tq-9)=(f,Tq-9)= (f,—T—a)

= /4, Z)—[adm (7, Z)= (73, Z) (Vg HY.

Thus f§ | ZH*=H:. But 7§ | H* as f | qH?. Hence fq | H*®H:=L".
Therefore fG=0 a.e., hence f=0 a.e.. Thus H*'©M=q-H"

Corollary. The following properties are equivalent.
(I) H? and the classical Hardy space H*(dO) are isometrically iso-
morphic to each other.
(II) For every nmon trivial closed subspace N of H? invariant under
multiplication by functions in A, M=H*©N has the form

M=P [Tq H 2]

where q is an inner function.

Further, if these conditions hold, then every complementary in-

# (,) denotes the usual inner product in L2
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variant subspace M is the closed linear span of {T"q};_, for some inner
function q.

Proof. (D=(I). Itiseasy to see that the simple invariance and
the A-invariance are equivalent in the classical case. The assertion
follows from Theorem.

(ID=(D. Suppose that (I) fails. ThenN:[ fe HS £-Zrdm=0m)|

is non trivial and A-invariant. By the assumption, H:*ON=P[Tq-H*]

for some inner function q. As in the proof of Theorem, we have

N=qH?. But this contradicts the fact that N is not simply invariant.
Now suppose that (I) or (IT) holds. Then H? is the closed linear

span of {Z"}y_,. It follows that M is the closed linear span of

(P(Tq-Z")z_, It suffices to see that for n=0,1,2, - - .

(1) P(Tq-Z")=Tr+\q.

Clearly P(Tq)=Tgq. By the induction on n, we show that for

n=12,...,

(2) TanzT"“q(-B{ > j qudmZ"'f“} :
i=1
We have
) Tq—Squm ]
Tq-Z="— (Squm) Z

=T® (Squm) Z.
Suppose 7 >1 and we know (2) for n—1. Then

= qu'n-l 1[ " n—1g = ]

Tq Zr=—"322 =_|T TI VA

e Z  Z q+{jz=l gdm }
an—Sandm

7 + Z[ Trqdm + {ngfqdmZn‘/}]

=Tn+1q@{ Z SqudmZn"j+l} .
Jj=1
Thus (2) holds. This implies (1), completing the proof.

Remark. The first part of Collorary is suggested by Merrill [3]
and the second part is the same of Theorem 4 in Douglas, Shapiro and
Shields [2]. (See Ann. Inst. Fourier, 20, 37-76 (1970) for the proof.)
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