176. On the Williamson's Conjecture

By Tetsuhiro SHIMIZU

Department of Mathematics, Tokyo Institute of Technology

(Comm. by Kinjirô KUNUGI, M. J. A., Sept. 12, 1970)

1. Let G be a non-discrete locally compact abelian group with the dual group Γ of G. We will denote by M(G) the Banach algebra of all bounded regular Borel measures on G under the convolution multiplication.

It is known that there exists a compact commutative topological semigroup S and an order preserving isometric-isomorphism θ of M(G) into M(S) such that:

(a) if $\mu \in M(G)$, $\nu \in M(S)$ and ν is absolutely continuous with respect to $\theta \mu$, then there is $\omega \in M(G)$ such that $\theta \omega = \nu$: and

(b) each multiplicative linear functional h on M(G) has the form

$$h(\mu) = \int_{S} f d\theta \, \mu \qquad (\mu \in M(G))$$

for an unique nonzero continuous semicharacter f on S (cf. [4]).

The set of all nonzero continuous semicharacters on S is denoted by \hat{S} . We may consider \hat{S} to be the maximal ideal space of M(G). Furthermore, \hat{S} is a compact semigroup and Γ may be considered to be the maximal group at the identity of \hat{S} (cf. [5]).

We denote by Δ the subset of \hat{S} consisting of functionals symmetric in the sense that $\hat{\mu}^*(f) = \overline{\hat{\mu}(f)}$ for any $\mu \in M(G)$, where * denotes the usual involution on M(G). Let $M(\Delta) = \{\mu \in M(G) : \hat{\mu}(f) = 0 \text{ for all } f \in \hat{S} \setminus \Delta\}.$

Let $M_{c}(G)$ denote the algebra of all continuous measures of M(G).

Our purpose is to show that the following *Williamson's conjecture* (cf. [6]) is true.

Williamson's conjecture: If $\mu \in M(\varDelta)$, then $\mu \in M_c(G)$.

2. By (a), if $f \in \hat{S}$ and $\mu \in M(G)$, then there is a measure $\mu_f \in M(G)$ such that $d\theta \mu_f = f d\theta \mu$.

The following lemmas are essential to prove that Williamson's conjecture is true.

Lemma 1. If $f \in \Gamma$ and $\mu \in M(G)$, then $d\theta \mu_f^* = f d\theta \mu^*$.

Lemma 2. If $f \in \Gamma$ and $g \in \hat{S} \setminus \Delta$, then $fg \in \hat{S} \setminus \Delta$.

For any $f \in \hat{S}$, let $S_f = \{s \in S : f(s) \neq 0\}$ and let $J_f = \{s \in S : f(s) = 0\}$.

Theorem 3. If $g \in \hat{S} \setminus \Delta$ and $\mu \in M(\Delta)$, then $\theta \mu|_{sg}$, the restriction to S_g of $\theta \mu$, is zero measure. In particular, $M(\Delta) \subset M_c(G)$.

From this, it follows that:

Corollary 4. Let $J_{\mathcal{A}} = \{s \in S : f(s) = 0 \text{ for all } f \in \mathcal{A}\}$, then $M(\mathcal{A}) = \{\mu \in M(G) : \theta \mu \text{ is concentrated on } J_{\mathcal{A}}\}$. Thus, $M(\mathcal{A})$ is an L-ideal.

If A is a subset of M(G) such that $\mu \in A$ implies $\mu^* \in A$, then we call A symmetric.

Lemma 5^{*)}. Let f be an idempotent semicharacter on S and let $I = \{\mu \in M(G) : \theta \mu \text{ is concentrated on } J_f\}$, then the following statements are equivalent:

(1) $f \in \varDelta$;

(2) $f \cdot \Gamma \subset \Delta$;

(3) I is a symmetric prime L-ideal (cf. [3]).

From this lemma, we have the next theorem.

Theorem 6. If I is a non-symmetric prime L-ideal, then $M(\Delta) \subset I$. This theorem have the following result.

Corollary 7. $M(\Delta)$ is a symmetric L-ideal.

At last, we will state two special results.

Let \mathfrak{T} be a *Raikov system* (cf. [7]), then we denote by $M(\mathfrak{T})$ the closed subalgebra of M(G) consisting of measures that are concentrated on Raikov system \mathfrak{T} . We denote by $M(\mathfrak{T})^{\perp}$ the complementary ideal of $M(\mathfrak{T})$, consisting of all measures that are singular with respect to all measures in $M(\mathfrak{T})$.

Theorem 8. Let G be a metric I-group. Let P is a compact independent perfect subset of G and let \mathfrak{T} be the Raikov system generated by $P \cup (-P)$. Then, $M(\varDelta) \subset M(\mathfrak{T})^{\perp}$.

Theorem 9. If H is a non-discrete, non-open and closed subgroup of G. Let $\mathfrak{A} = \{\bigcup_{i=1}^{\infty} (x_i + H) : x_i \in G, i=1,2,3,4,\cdots\}$. Let $M(\mathfrak{A})$ be the closed subalgebra of M(G) consisting of all measures that are concentrated on \mathfrak{A} . Then, $M(\varDelta) \subset M(\mathfrak{A})^{\perp}$.

The detail of the proof will appear in the nearest future.

References

- S. W. Drury: Properties of certain measures on topological group. Proc. Camb. Phil. Soc., 64, 1011-1013 (1968).
- [2] W. Rudin: Fourier Analysis on Groups. New York (1962).
- [3] T. Shimizu: On prime L-ideals and the structure semigroup of M(G) (to appear).
- [4] J. L. Taylor: The structure of convolution measure algebras. Trans. Amer. Math. Soc., 119, 150-166 (1965).
- [5] —: L-subalgebras of M(G). Trans. Amer. Math. Soc., **134**, 105–113 (1969).
- [6] J. H. Williamson: Banach algebra elements with independent powers and theorems of Winer-Pitt type. Function algebra, 186-197. Chicago (1966).
- [7] ——: Raikov system. Symposia on Theoretical Physics and Mathematics, Vol. 8, 173–183. New York (1968).
 - *) This lemma shows that there is a gap between the proof in [1] and ours.