176. On the Williamson's Conjecture

By Tetsuhiro Shimizu
Department of Mathematics, Tokyo Institute of Technology

(Comm. by Kinjirô Kunugi, m. J. A., Sept. 12, 1970)

1. Let G be a non-discrete locally compact abelian group with the dual group Γ of G. We will denote by $M(G)$ the Banach algebra of all bounded regular Borel measures on G under the convolution multiplication.

It is known that there exists a compact commutative topological semigroup S and an order preserving isometric-isomorphism θ of $M(G)$ into $M(S)$ such that:
(a) if $\mu \in M(G), \nu \in M(S)$ and ν is absolutely continuous with respect to $\theta \mu$, then there is $\omega \in M(G)$ such that $\theta \omega=\nu$: and
(b) each multiplicative linear functional h on $M(G)$ has the form

$$
h(\mu)=\int_{S} f d \theta \mu \quad(\mu \in M(G))
$$

for an unique nonzero continuous semicharacter f on S (cf. [4]).
The set of all nonzero continuous semicharacters on S is denoted by \hat{S}. We may consider \hat{S} to be the maximal ideal space of $M(G)$. Furthermore, \hat{S} is a compact semigroup and Γ may be considered to be the maximal group at the identity of \hat{S} (cf. [5]).

We denote by Δ the subset of \hat{S} consisting of functionals symmetric in the sense that $\hat{\mu}^{*}(f)=\overline{\hat{\mu}(f)}$ for any $\mu \in M(G)$, where ${ }^{*}$ denotes the usual involution on $M(G)$. Let $M(\Delta)=\{\mu \in M(G): \hat{\mu}(f)=0$ for all $f \in \hat{S} \backslash \Delta\}$.

Let $M_{c}(G)$ denote the algebra of all continuous measures of $M(G)$.
Our purpose is to show that the following Williamson's conjecture (cf. [6]) is true.

Williamson's conjecture: If $\mu \in M(\Delta)$, then $\mu \in M_{c}(G)$.
2. By (a), if $f \in \hat{S}$ and $\mu \in M(G)$, then there is a measure μ_{f} $\in M(G)$ such that $d \theta \mu_{f}=f d \theta \mu$.

The following lemmas are essential to prove that Williamson's conjecture is true.

Lemma 1. If $f \in \Gamma$ and $\mu \in M(G)$, then $d \theta \mu_{f}^{*}=f d \theta \mu^{*}$.
Lemma 2. If $f \in \Gamma$ and $g \in \hat{S} \backslash \Delta$, then $f g \in \hat{S} \backslash \Delta$.
For any $f \in \hat{S}$, let $S_{f}=\{s \in S: f(s) \neq 0\}$ and let $J_{f}=\{s \in S: f(s)=0\}$.
Theorem 3. If $g \in \hat{S} \backslash \Delta$ and $\mu \in M(\Delta)$, then $\left.\theta \mu\right|_{S_{g}}$, the restriction to S_{g} of $\theta \mu$, is zero measure. In particular, $M(\Delta) \subset M_{c}(G)$.

From this, it follows that:

Corollary 4. Let $J_{\Delta}=\{s \in S: f(s)=0$ for all $f \in \Delta\}$, then $M(\Delta)$ $=\left\{\mu \in M(G): \theta \mu\right.$ is concentrated on $\left.J_{\Delta}\right\}$. Thus, $M(\Delta)$ is an L-ideal.

If A is a subset of $M(G)$ such that $\mu \in A$ implies $\mu^{*} \in A$, then we call A symmetric.

Lemma 5*). Let f be an idempotent semicharacter on S and let $I=\left\{\mu \in M(G): \theta \mu\right.$ is concentrated on $\left.J_{f}\right\}$, then the following statements are equivalent:
(1) $f \in \Delta$;
(2) $f \cdot \Gamma \subset \Delta$;
(3) I is a symmetric prime L-ideal (cf. [3]).

From this lemma, we have the next theorem.
Theorem 6. If I is a non-symmetric prime L-ideal, then $M(\Delta) \subset I$.
This theorem have the following result.
Corollary 7. $M(\Delta)$ is a symmetric L-ideal.
At last, we will state two special results.
Let \mathfrak{I} be a Raikov system (cf. [7]), then we denote by $M(\mathfrak{T})$ the closed subalgebra of $M(G)$ consisting of measures that are concentrated on Raikov system \mathfrak{I}. We denote by $M(\mathfrak{T})^{\perp}$ the complementary ideal of $M(\mathfrak{T})$, consisting of all measures that are singular with respect to all measures in $M(\mathfrak{Z})$.

Theorem 8. Let G be a metric I-group. Let P is a compact independent perfect subset of G and let \mathfrak{I} be the Raikov system generated by $P \cup(-P)$. Then, $M(\Delta) \subset M(\mathfrak{T})^{\perp}$.

Theorem 9. If H is a non-discrete, non-open and closed subgroup of G. Let $\mathfrak{A}=\left\{\bigcup_{i=1}^{\infty}\left(x_{i}+H\right): x_{i} \in G, i=1,2,3,4, \cdots\right\}$. Let $M(\mathfrak{H})$ be the closed subalgebra of $M(G)$ consisting of all measures that are concentrated on \mathfrak{A}. Then, $M(\Delta) \subset M(\mathfrak{H})^{\perp}$.

The detail of the proof will appear in the nearest future.

References

[1] S. W. Drury: Properties of certain measures on topological group. Proc. Camb. Phil. Soc., 64, 1011-1013 (1968).
[2] W. Rudin: Fourier Analysis on Groups. New York (1962).
[3] T. Shimizu: On prime L-ideals and the structure semigroup of $M(G)$ (to appear).
[4] J. L. Taylor: The structure of convolution measure algebras. Trans. Amer. Math. Soc., 119, 150-166 (1965).
[5] _-: L-subalgebras of $M(G)$. Trans. Amer. Math. Soc., 134, 105-113 (1969).
[6] J. H. Williamson: Banach algebra elements with independent powers and theorems of Winer-Pitt type. Function algebra, 186-197. Chicago (1966).
[7] -: Raikov system. Symposia on Theoretical Physics and Mathematics, Vol. 8, 173-183. New York (1968).
*) This lemma shows that there is a gap between the proof in [1] and ours.

