244. A Criterion for Boundedness of a Linear Map from any Banach Space into a Banach Function Space*)

By J. Diestel
(Comm. by Kinjirô Kunugı, M. J. A., Dec. 12, 1970)

[Abstract. Let (X, Λ, μ) be a totally sigma-finite complete measure space, ρ be a function norm with associate seminorm ρ^{\prime}, Y be a Banach space. If $L \rho$ is a Banach function space then for a linear mapping $T: Y \rightarrow L \rho$ be continuous it is necessary and sufficient that given $E \in \Lambda$ with $\rho^{\prime}\left(\chi_{E}\right)<\infty$ the functional T_{E} defined by $T_{E} y=\int(T y)(x) \chi_{E}(x) d \mu(x)$ is continuous. It is noted that the collection $\left\{E \in \Lambda: \mu(E), \rho^{\prime}\left(\chi_{D}\right)<\infty\right\}$ is sufficient to generate the same integration theory as Λ and if ρ satisfies the Fatou property this collection even generates (algebraically and isometrically) the function space $L \rho$.]

This note is based entirely on the notes of Luxemburg and Zaanen [13], a knowledge of which, will be assumed throughout; the notations of those authors will be preserved and references to [13] Will simply note the particular results of [13] without further modification. Of course, reference to papers other than [13] will be modified by the appropriate reference list number.

Theorem. Let ρ be a function norm satisfying the Riesz-Fischer property (so L ρ is a Banach function space); suppose that Y is a Banach space and that $T: Y \rightarrow L \rho$ is a linear mapping.

Then in order that T be continuous it is necessary and sufficient that the following hold: given $E \in \Lambda$ such that $\chi_{E} \in L \rho^{\prime}$, the linear functional T_{E} defined on Y to the scalar field by

$$
T_{E} y=\int_{E}(T y)(x) d \mu(x)
$$

be a mumber of Y^{\prime}.
Proof. Necessity follows immediately from Lemma 13.1.
To prove sufficiency, we note that since ρ is a function norm it follows from Corollary 11.5 that ρ^{\prime} is saturated (in fact, ρ 's being a norm is equivalent to $\rho^{\prime \prime}$ s being saturated), so that by Theorem 8.7 there exists a sequence of subsets X_{n} of X satisfying $X_{n} \nearrow X, \mu\left(X_{n}\right)<\infty$, and $\rho^{\prime}\left(\chi_{X_{n}}\right)<\infty$ (of course, $X_{n} \in \Lambda$; for the rest of the proof we will assume the sequence $\left\{X_{n}\right\}$ to be chosen according to these requirements.

We now consider the linear mapping $T: Y \rightarrow L \rho$. We will show

[^0]that T is continuous by showing its graph to be closed, whence as Y and $L \rho$ are Banach spaces we can apply the closed graph theorem to yield T's continuity.

Let $y_{m} \in Y$ for $m=0,1, \cdots$ and $f_{m} \in L \rho$ for $m=0,1, \cdots$. Suppose for $m=1,2, \cdots$, that $T y_{m}=f_{m}$ and that $y_{m} \rightarrow y_{0}$ (in Y) and $f_{m} \rightarrow f_{0}$ (in $L \rho$-norm). Fix n momentarily and consider the set X_{n}. For each set $E \in \Lambda$, such that $E \subseteq X_{n}$, we have $\rho^{\prime}\left(\chi_{E}\right) \leq \rho^{\prime}\left(\chi_{x_{n}}\right)<\infty$, so that the linear functional $T_{E} \in Y^{\prime}$ in particular,

$$
\begin{aligned}
\int_{E}\left(T y_{0}\right)(x) d \mu(x) & =T_{E} y_{0} \\
& =\lim _{m} T_{E} y_{m} \\
& =\lim _{m} \int_{E}\left(T y_{m}\right)(x) d \mu(x) \\
& =\lim _{m} \int_{E} f_{m}(x) d \mu(x) \\
& =\int_{E} f_{0}(x) d \mu(x)
\end{aligned}
$$

by the fact that (by Lemma 13.1) convergence in $L \rho$ is stronger than the L_{1}-convergence on E 's for which $\rho^{\prime}\left(\chi_{E}\right)<\infty$. Thus, for each $E \in \Lambda$, satisfying $E \subseteq X_{n}$ we have

$$
\int_{E}\left(T y_{0}\right)(x) d \mu(x)=\int_{E} f_{0}(x) d \mu(x)
$$

Thus, by the Radon-Nikodym theorem $T y_{0}=f_{0}(\mu-$ a.e. $)$ on X_{n}.
But then,

$$
\begin{aligned}
T y_{0} & =\lim _{n} \chi_{X_{n}} \cdot T y_{0} \\
& =\lim _{n} \cdot \chi_{X_{n}} \cdot f_{0}=f_{0}
\end{aligned}
$$

holds μ-a.e. Thus, $Y y_{0}$ and f_{0} are-as members of $L \rho$-identical and T 's graph is closed.

Several remarks seem appropriate; they are in a sense directly related to the above theorem while they might be considered to be of some independent interest.

Suppose ρ is any function norm. Define $V \rho$ to be the collection

$$
\left\{E \in \Lambda: \mu(E), \rho^{\prime}\left(\chi_{E}\right)<\infty\right\}
$$

It is clear that $V \rho$ is a sub-ring of Λ (in fact, $V \rho$ is even an ideal in the Boolean algebra Λ [12]) which contains all the μ-null sets and (as is readily seen using Theorem 6. B of [12], along with Corollary 11.5 and Theorem 8.7) generates all of Λ.

Suppose we denote by $v \rho$ the restriction of μ to $V \rho$. Then, in the terminology of Bogdanowicz (1), triple ($X, V \rho, v \rho$) forms a volume space. In a sequence of papers ([1], [2], [3], [4], and [5]), Bogdanowicz has developed an approach to the theory of integration and measurable functions generated by a volume space; in another sequence of papers ([6], [7], [8], and [9]), he related the above approach to the Classical
measure-theoretic approaches and gave necessary and sufficient conditions for different volumes and measures to generate the same (algebraically and isometrically) classes of Lebesgue-Bochner summable functions and identical (generalized) Lebesgue-Bochner-Stieltjes type integrals.

Using his results, as well as, the above remarks on the volume space ($X, V \rho, v \rho$), it is a painless exercise to establish that the spaces of Lebesgue-Bochner integrable functions generated by the volume space ($X, V \rho, v \rho$) and the measure space (x, Λ, μ) are the same (algebraically and isometrically).

It follows from this, using the techniques of the papers cited above, that the spaces of Lebesgue-Bochner measurable functions, L^{p}-spaces and even the Orlicz spaces of Lebesgue-Bochner measurable functions are identical (algebraically and, when applicable, isometrically) whether generated by ($X, V \rho, v \rho$) or (X, Λ, μ).

Pursueing this train of thought a bit further, note that if ρ also satisfies the Fatou property then ρ is definable by means of integrals of members of its associate space $L \rho^{\prime}$; in fact, $\rho=\rho^{\prime \prime}$ so $\rho(f)$ $=\sup \left\{\int|f| g d \mu: \rho^{\prime}(g) \leq 1\right\}$ note that ρ^{\prime} satisfies the Fatou property, thus by Theorem 20.B of [12], we may assume the g 's in the above definition to be simple functions ; again, it is easily shown that ($X, V \rho, v \rho$) generates the same space $L \rho$ as does (X, Λ, μ) in the sense that given $f \in L \rho$ (X, Λ, μ) then $\rho(f)$ can be written in the form

$$
\rho(f)=\sup \left\{\int|f| s d v \rho\right\}
$$

where the supremum is taken over all $V \rho$-simple functions s such that $\rho^{\prime}(s) \leq 1$, and the above integral is the one discussed in [3].

Finally we remark that the above theorem is in a certain sense an improvement of the results contained in Gretsky's Memoir [11] on pages 11-19; it is proved under considerably more general hypotheses on the function norm ρ than Grestsky's theorems. However, Gretsky's results are considerably more pleasing in the sense that he (through use of the additional hypotheses) obtains precise estimates involving the norm of the operator T as an operator and the norm of a related set function defined on $V \rho$ (which involves only the constant found in Amemiya's theorem (5.5)) ; of course, this is done by avoiding use of the closed graph theorem.

References

[1] Bogdanowicz, W. M.: A generalization of the Lebesgue-Bochner-Stieltjes integral and a new approach to the theory of integration. Proc. Nat. Acad. Sci. (USA), 53, 492-498 (1965).
[2] Bogdanowicz, W. M.: An approach to the theory of L_{p} spaces of LebesgueBochner summable functions and generalized Lebesgue-Bochner-Stieltjes integral. Bull. Acad. Pol. Sci., 13, 793-800 (1965).
[3] - : An approach to the theory of Lebesgue-Bochner measurable functions and to the theory of measure. Math. Ann., 164, 251-269 (1966).
[4] --: An approach to the theory of integration and theory of LebesgueBochner measurable functions on locally compact spaces. Math. Ann., 171, 219-238 (1967).
[5] _-: An approach to the theory of integration generated by Daniell functionals and representations of linear continuous functionals. Math. Ann., 173, 34-52 (1967).
[6] -: Existence and uniqueness of extensions of volumes and the operation of completion of a volume. I. Proc. Japan Acad., 42, 571-576 (1966).
[7] -: On volumes generating the same Lebesgue-Bochner integration. Proc. Nat. Acad. Sci. (USA), 56, 1399-1405 (1966).
[8] -: Relations between complete integral semi norms and complete volumes. Proc. Japan Acad., 43, 286-289 (1967).
[9] -: Relations between volumes and measures. Proc. Japan Acad., 43, 290-294 (1967).
[10] Diestel, J.: An approach to the theory of Orlicz spaces of LebesgueBochner measurable functions (to appear in Math. Ann.).
[11] Gretsky, N.: Representation theorems on Banach function spaces. Memoirs of the American Mathematical Society, No. 84 (1968).
[12] Halmos, P. R.: Measure Theory. D. Van Nostrand Co. New York (1950).
[13] Luxemburg, W. A. J., and Zaanen, A. C.: Notes on Banach function spaces. Proc. Acad. Sci. Amsterdam (Indag. Math.), Note I: A66, 135-147 (1963), Note II: A66, 148-153 (1963), Note III: A66, 239-250 (1963), Note IV: A66, 251-263 (1963), Note V: A66, 496-504 (1963).

[^0]: *) The research for this paper was supported in part by West Georgia College Faculty Research Grant No. 699.

