28. Angular Cluster Sets and Horocyclic Angular Cluster Sets

By Hidenobu YOSHIDA Department of Mathematics, Chiba University, Chiba

(Comm. by Kinjirô KUNUGI, M. J. A., Jan. 12, 1971)

1. In [1] Bagemihl began a study of relations between nontangential (angular) boundary behaviors and horocyclic boundary behaviors of meromorphic functions defined in the open unit disk D of the complex plane. This study has been continued by Dragosh in [2] and [3]. The purpose of the present paper is to sharpen some of results of these investigations by the method of Dolzhenko's paper.

Notation and definitions. Unless otherwise stated, $f: D \rightarrow W$ shall mean f(z) is an arbitrary function (generally not unique) defined in the open unit disk D: |z| < 1 and assuming values in the extended complex plane W. The unit circle |z|=1 is denoted by Γ .

A circle internally tangent to Γ at a point $\zeta \in \Gamma$ is called a horocycle at ζ , and will be denoted by $h_r(\zeta)$, where $r \ (0 < r < 1)$ is the radius of the horocycle.

Given a horocycle $h_r(\zeta)$ at a point $\zeta \in \Gamma$, the region interior to $h_r(\zeta)$ is called an oricycle at ζ , and will be denoted by $K_r(\zeta)$, or simply $K(\zeta)$ without specifying r. The half of $K_r(\zeta)$ lying to the right of the radius at ζ as viewed from the origin will be denoted by $K_r^+(\zeta)$ and $K_r^-(\zeta)$ denotes the left half of $K_r(\zeta)$ analogously.

Suppose that $0 < r_1 < r_2 < 1$. Let $r_3(0 < r_3 < 1)$ be so large that the circle $|z| = r_3$ intersects both of the horocycles $h_{r_1}(\zeta)$ and $h_{r_2}(\zeta)$. We define the right horocyclic angle $H^+_{r_1, r_2, r_3}(\zeta)$ at ζ with radii r_1, r_2, r_3 to be $H^+_{r_1, r_2, r_3}(\zeta) = \operatorname{com}(\overline{K^+_{r_1}(\zeta)}) \cap K^+_{r_2}(\zeta) \cap \{z : |z| \ge r_3\},$

where the bar denotes closure and comp denotes complement, both relative to the plane. The corresponding left horocyclic angle is denoted $H_{r_1,r_2,r_3}(\zeta)$. We write $H_{r_1,r_2,r_3}(\zeta)$ to denote a hyrocyclic angle at ζ without specifying whether it be right or left, or simply $H(\zeta)$ in the event r_1, r_2, r_3 are arbitrary.

We assume the reader to be familiar with the rudiments of the cluster sets.

 $C_{v}(f, \zeta)$, the angular cluster set of f(z) at ζ on a Stolz angle $V(\zeta)$;

 $C_{K}(f, \zeta)$, the oricyclic cluster set of f(z) at ζ on an oricycle $K(\zeta)$;

 $C_H(f,\zeta)$, the horocyclic angular cluster set of f(z) at ζ on a horocyclic angle $H(\zeta)$.

A point $\zeta \in \Gamma$ is said to be a horocyclic angular Plessner point

(oricyclic Plessner point) of f(z) provided that

 $C_{H}^{+}(f,\zeta) = W$ and $C_{H}^{-}(f,\zeta) = W$ ($C_{K}(f,\zeta) = W$) for each right and left horocyclic angle (each oricycle) at ζ .

A point $\zeta \in \Gamma$ is called a horocyclic angular Fatou point (oricyclic Fatou point) of f(z) with a horocyclic angular Fatou value (an oricyclic Fatou value) $w \in W$ provided that

 $C_{H}^{+}(f,\zeta) = \{w\}$ and $C_{H}^{-}(f,\zeta) = \{w\} (C_{K}(f,\zeta) = \{w\})$

for each right and left horocyclic angle (each oricycle) at $\boldsymbol{\zeta}.$

Suppose a set $A \subset \Gamma$ and a point $\zeta = e^{i\theta} \in \Gamma$ are given. For a $\varepsilon > 0$, we denote an arc $\{e^{i\theta'}; \theta - \varepsilon < \theta' < \theta + \varepsilon\}$ by $\Gamma(\varepsilon, \zeta)$. Let $\gamma(\zeta, \varepsilon, A)$ be the largest of arcs contained in $\Gamma(\varepsilon, \zeta)$ and not intersecting with A. The set A is of porosity of the order α , $0 < \alpha \leq 1$ (or simply of porosity (α)) at ζ , if

$$\overline{\lim_{{\varepsilon}\to 0}}\,\frac{1}{{\varepsilon}}\{\gamma(\zeta,{\varepsilon},A)\}^{\alpha}\!>\!0.$$

A is of porosity (α) on Γ if it is so at each $\zeta \in A$. A set which is a countable sum of sets of porosity (α) is said to be of σ -porosity (α) .

A set of σ -porosity (α) is of the first Baire category.

It is easily seen that a measurable set which is of porosity (1) on Γ has no points of density. Therefore every measurable set of σ -porosity (1) on Γ is of measure 0. But there exists the set, which is of measure 0 and not of σ -porosity (1) (see [6], p. 75).

2. A KH(KV)-singular point is the point $\zeta \in \Gamma$ such that $C_K(f,\zeta) \neq C_H(f,\zeta)(C_K(f,\zeta)\neq C_V(f,\zeta))$ for some pair of $K(\zeta)$ and $H(\zeta)(K(\zeta)$ and $V(\zeta))$. The set of all KH(KV)-singular points is denoted by $E_{KH}(f)$ $(E_{KV}(f))$.

A *KK*-singular point is the point $\zeta \in \Gamma$ such that $C_{K'}(f, \zeta) \neq C_{K''}(f, \zeta)$ for some pair of oricycles $K'(\zeta)$ and $K''(\zeta)$. The set of all *KK*-singular points is denoted by $E_{KK}(f)$.

Let $\{r_i\}_{i=1}^{\infty}$ be a sequence of all rational numbers satisfying $0 < r_i < 1$, and let $\{D_n\}$ be a sequence consisting of all closed circles of the plane W having rational radii r_n and centers with rational coordinates.

For a $\varepsilon > 0$, we set $U_{\varepsilon}(\zeta) = \{z; |z - \zeta| < \varepsilon\}$. We denote $K_{r_p}(\zeta)$ by $K_p(\zeta)$ and $H_{r_k, r_l, r_m}(\zeta)$ by $H_{k, l, m}(\zeta)$.

Lemma 1. Let $\zeta \in A \subset \Gamma$. Suppose A is not of porosity (1) at a point $\zeta \in A$. Then for fixed $r_p, r_k, r_l, r_m, K_p(\zeta) \cap U_{\epsilon}(\zeta)$ is covered by the set $M = \bigcup_{\epsilon \in A} H_{k,l,m}(\xi)$ supposed $\epsilon > 0$ is sufficiently small.

Proof. Without loss of generality, we may assume that $\zeta = 1$. Now we suppose that there exists a sequence $z_{\nu} = x_{\nu} + iy_{\nu}(\nu = 1, 2, 3, \cdots)$ such that $z_{\nu} \in K_{p}(1) \cap U_{\epsilon}(1) - M$ and $z_{\nu} \rightarrow 1$. For each z_{ν} , points $R_{1}(z_{\nu})$, $S_{1}(z_{\nu}), R_{2}(z_{\nu}), S_{2}(z_{\nu})$ on Γ are decided as follows.

 $R_1(z_{\nu})(S_1(z_{\nu}))$ is the point on Γ such that the point z_{ν} lies on the right half of $h_{r_1}(R_1(z_{\nu}))(h_{r_k}(S_1(z_{\nu})))$;

 $R_2(z_{\nu})(S_2(z_{\nu}))$ is the point on Γ such that the point z_{ν} lies on the left half of $h_{r_{\nu}}(R_2(z_{\nu}))(h_{r_k}(S_2(z_{\nu})))$.

$$\begin{split} & \text{Let } x_{\nu} = r_{\nu} e^{i\theta\nu}. \quad \text{We immediately have} \\ \hline R_{1}(z_{\nu})S_{1}(z_{\nu}) \text{ (the arc length connecting } R_{1}(z_{\nu}) \text{ and } S_{1}(z_{\nu})) \\ &= \overline{R_{2}(z_{\nu})S_{2}(z_{\nu})} = \cos^{-1} \left\{ \frac{2(1-r_{l})-(1-r_{\nu}^{2})}{2(1-r_{l})r_{\nu}} \right\} - \cos^{-1} \left\{ \frac{2(1-r_{k})-(1-r_{\nu}^{2})}{2(1-r_{k})r_{\nu}} \right\}, \\ & \overline{R_{i}(z_{\nu})} \ 1 = \theta_{\nu} - (-1)^{i} \ \cos^{-1} \left\{ \frac{2(1-r_{l})-(1-r_{\nu}^{2})}{2(1-r_{l})r_{\nu}} \right\} \quad (i=1,2), \\ & \overline{S_{i}(z_{\nu})} \ 1 = \theta_{\nu} - (-1)^{i} \ \cos^{-1} \left\{ \frac{2(1-r_{k})-(1-r_{\nu}^{2})}{2(1-r_{k})r_{\nu}} \right\} \quad (i=1,2). \end{split}$$
Since $z_{\nu} \in K_{p}(1), \quad |\theta_{\nu}| < \cos^{-1} \left\{ \frac{2(1-r_{p})-(1-r_{\nu}^{2})}{2(1-r_{p})r_{\nu}} \right\}. \quad \text{We set} \\ & \varepsilon_{\nu} = \max \left\{ \overline{R_{1}(z_{\nu})} \ 1, \ \overline{S_{1}(z_{\nu})} \ 1, \ \overline{S_{2}(z_{\nu})} \ 1, \ \overline{S_{2}(z_{\nu})} \ 1 \right\}. \\ & \lim_{\nu \to \infty} \frac{\overline{R_{1}(z_{\nu})S_{1}(z_{\nu})}}{\sqrt{1-r_{\nu}}} > 0 \text{ and } \varepsilon_{\nu} = O(\sqrt{1-r_{\nu}}) \text{ as } \nu \to \infty. \end{split}$

Since $\{R_1(z_{\nu})S_1(z_{\nu}) \text{ (the arc connecting } R_1(z_{\nu}) \text{ and } S_1(z_{\nu})) \cup R_2(z_{\nu})S_2(z_{\nu})\}$ $\cap A = \phi$, we have $\gamma(1, \varepsilon_{\nu}, A) \ge \overline{R_1(z_{\nu})S_1(z_{\nu})}$.

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \gamma(1,\varepsilon,A) \ge \lim_{\nu \to \infty} \frac{1}{\varepsilon_{\nu}} \overline{R_1(z_{\nu})S_1(z_{\nu})} \ge \lim_{\nu \to \infty} \frac{\sqrt{1-r_{\nu}}}{\varepsilon_{\nu}} \frac{\overline{R_1(z_{\nu})S_1(z_{\nu})}}{\sqrt{1-r_{\nu}}} > 0,$$

and obtain a contradiction to the assumption that 1 is not a point of porosity (1) for A. Therefore, for $\varepsilon > 0$ small enough, $K_p(1) \cap U_{\varepsilon}(1)$ is covered by the set $M = \bigcup_{\varepsilon \in \mathcal{A}} H_{k,l,m}(\hat{\varepsilon})$.

Lemma 2 (Yanagihara [5, Theorem 1]). Let $f: D \to W$. Then $E_{KK}(f)$ is of the type $G_{i\sigma}$ and σ -porosity (1).

Theorem 1. Let $f: D \to W$. Then $E_{KH}(f)$ is of the type $G_{s\sigma}$ and σ -porosity (1).

Proof. $E_{n,k,l,m}$ is the set of points $\zeta \in \Gamma$ such that the set

$$w = f(z) ; z \in H_{k,l,m}(\zeta)$$

$$(1)$$

lies at a distance $\geq r_n$ from D_n .

 $F_{n,p,q}$ is the set of points $\zeta \in \Gamma$ such that the set

$$\left\{w=f(z)\,;\,z\in K_p(\zeta),\frac{1}{3q}<\!\mathrm{dis}\,(z,\zeta)<\!\frac{1}{q}\right\}$$
(2)

has common points with D_n .

Then $E_{n,k,l,m}$ is closed and $F_{n,p,q}$ is open. We put

$$F_{n,p} = \bigcap_{l=1}^{\infty} \bigcup_{q=l}^{\omega} F_{n,p,q} \text{ and } A_{n,k,l,m} \cap F_{n,p}.$$
(3)

We will show

$$E_{KH}(f) = \left(\bigcup_{n,k,l,m,p} A_{n,k,l,m,p}\right) \cup E_{KK}(f).$$

$$(4)$$

Take a point $\zeta \in E_{KH}(f)$ and $\zeta \notin E_{KK}(f)$. There exist $K(\zeta)$ and $H(\zeta), K(\zeta) \supset H(\zeta)$, for which $C_K(f, \zeta) \supseteq C_H(f, \zeta)$. Choose number p and s such that $K_p(\zeta) \supset K(\zeta)$ and

 $D_s \cap C_K(f,\zeta) \neq \phi, \quad \operatorname{dis} (D_s, C_H(f,\zeta)) > 5r_s. \tag{5}$

Then we can find numbers k, l, m such that $H(\zeta) \supset H_{k, l, m}(\zeta)$ and dis $(D_s, f(z)) > 4r_s$ for $z \in H_{k,l,m}(\zeta)$. If D_n is a disk with radius $r_n = 2r_s$ and concentric with D_s , dis $(D_n, f(z)) > r_n$ for $z \in H_{k,l,m}(\zeta)$, which shows $\zeta \in E_{n,k,l,m}$. In view of (5) there exists an infinite number of q such that

$$D_n \cap \left\{ w = f(z) ; z \in K_p(\zeta), \frac{1}{3q} < \operatorname{dis}(z, \zeta) < \frac{1}{q} \right\} \neq \phi,$$

which shows $\zeta \in F_{n,p}$. Thus $\zeta \in A_{n,k,l,m,p}$ and

 $E_{KH}(\zeta) \subset (\bigcup_{\substack{n,k,l,m,p\\n,k,l,m,p}} A_{n,k,l,m,p}) \cup E_{KK}(f).$ Take a point $\zeta \in (\bigcup_{\substack{n,k,l,m,p\\n,k,l,m,p}} A_{n,k,l,m,p}) \cup E_{KK}(f).$ If $\zeta \in E_{KK}(f)$, clearly we have $\zeta \in E_{KH}(f)$. If $\zeta \in \bigcup_{\substack{n,k,l,m,p\\n,k,l,m,p}} A_{n,k,l,m,p}, C_{H_{k,l,m}}(f,\zeta) \cap D_n = \phi$ from (1) and $C_{K_p}(f,\zeta) \cap D_n \neq \phi$ from (2). Thus we have $C_{H_{k,l,m}}(f,\zeta) \neq C_{K_p}(f,\zeta)$ and $\zeta \in E_{KH}(f)$. Hence $(\bigcup_{n,k,l,m,p} A_{n,k,l,m,p}) \cup E_{KK}(f) \subset E_{KH}(f)$.

Since $E_{KK}(f)$ is of type $G_{\delta\sigma}$ by Lemma 2, the equality (4) shows that $E_{KH}(f)$ is type $G_{\delta\sigma}$.

According to Lemma 1, $E_{KK}(f)$ is of σ -porosity (1), so that it remains to prove that $A = A_{n,k,l,m,p}$ is of porosity (1).

Suppose A is not of porosity (1) at a point $\zeta \in A$. Then for sufficiently small $\varepsilon > 0, K_p(\zeta) \cap U_{\varepsilon}(\zeta)$ is covered by the set $\bigcup_{\varepsilon \in A} H_{k,l,m}(\xi)$ by Lemma 1. Thus if $z \in K_p(\zeta) \cap U_{\epsilon}(\zeta)$, there is a point $\xi \in A = A_{n,k,l,m,p}$, $z \in H_{k,l,m}(\xi)$. Therefore w = f(z) lies at a distance $\geq r_n$ from D_n , and $C_{K_p}(f,\zeta) \cap D_n = \phi$. This contradicts with $\zeta \in F_{n,p}$. Thus the porosity (1) of A is proved.

Theorem 2 (Yanagihara [5, Theorem 2]). Let $f: D \rightarrow W$. Then $E_{KV}(f)$ is of the type $G_{\delta\sigma}$ and of σ -porosity (1/2).

3. Now we can state some precisions and generalizations of the results of Bagemihl [1, Theorem 1, Theorem 2, Theorem 4 and Remark 3] and Dragosh [3, Theorem 1, Remark 2 and Corollary 2].

Theorem 3. Let $f: D \rightarrow W$. Then a horocyclic angular Fatou point of f(z) is an angular Fatou point of f(z) except on a set of σ porosity (1).

Proof. According to Theorem 1, except on a set of σ -porosity (1), a horocyclic angular Fatou point of f is an oricyclic Fatou point of f, which is an angular Fatou point of f by the fact $C_K(f,\zeta) \supset C_V(f,\zeta)$.

Theorem 4. Let $f: D \rightarrow W$. Then an angular Fatou point of f(z)is a horocyclic angular Fatou point except on a set of σ -porosity (1/2).

This is an analogous deduction from Theorem 2. Proof.

Theorem 5. Let $f: D \rightarrow W$. Then an angular Plessner point of f(z) is a horocyclic angular Plessner point of f(z) except on a set of σ -porosity (1).

Proof. By the fact $C_{K}(f,\zeta) \supset C_{V}(f,\zeta)$, an angular Plessner point

of f is an oricyclic Plessner point of f, which is a horocyclic angular Plessner point of f except on a set of σ -porosity (1) according to Theorem 1.

Theorem 6. Let $f: D \rightarrow W$. Then a horocyclic angular Plessner point of f(z) is an angular Plessner point of f(z) except on a set of σ -porosity (1/2).

Proof. This is an analogous deduction from Theorem 2.

4. We have not yet established the complete structual characterizations of set $E_i(i=1,2,3,4)$ such that

(a horocyclic angular Fatou point is an angular Fatou point on E_1 , an angular Fatou point is a horocyclic angular Fatou point on E_2 , an angular Plessner point is a horocyclic angular Plessner point on E_3 . a horocyclic angular Plessner point is an angular Plessner point on E_4 , for some functions.

But we establish only one special result in this direction here

In proving next Theorem 7, we use the function f(z) constructed by Yanagihara [5].

Lemma 3. Let $E \subset \Gamma$ be a closed everywhere disconnected set. Then there exists a bounded holomorphic function f(z) with the following properties:

1) At every $\zeta \in \text{comp}(F)$, f(z) is continuous. Therefore, ζ is both an angular Fatou point and a horocyclic angular Fatou point.

2) Each point $\zeta \in F$ is an angular Fatou point having an angular limit of modulus 1.

3) Each point $\zeta \in F$ at which the set F is of porosity (1/2) is not a horocyclic angular Fatou point.

Proof. Comp (F) consists of a countable number of arcs $(\zeta'_{\nu}, \zeta''_{\nu})$. For a constant r(0 < r < 1), $h_r(\zeta'_{\nu}) \cap h_r(\zeta''_{\nu}) \neq \phi$ except at most finite number of ν 's. Let $z'_{\nu,1} = z''_{\nu,1}$ be the one of intersection points of $h_r(\zeta'_{\nu})$ and $h_r(\zeta''_{\nu})$ which is nearer to Γ . For each exceptional index ν , let $z'_{\nu,1}$ be the left one of intersection points of $h_r(\zeta'_{\nu})$ and |z|=1-r, and let $z''_{\nu,1}$ be the right one of intersection points of $h_r(\zeta''_{\nu})$ and |z|=1-r. Next, let $z'_{\nu,n}$ be the point on $h_r(\zeta'_{\nu})$ such that

$$\frac{1\!-\!|z'_{\nu,n}|}{|\zeta'_{\nu}\!-\!z'_{\nu,n}|} = \frac{1}{2} \frac{1\!-\!|z'_{\nu,n-1}|}{|\zeta'_{\nu}\!-\!z'_{\nu,n-1}|} \qquad (n\!=\!2,3,4,\cdots).$$

The sequence $\{z_{\nu,n}^{\prime\prime}\}$ on $h_r(\zeta_{\nu}^{\prime\prime})$ is defined analogously.

Then the Blaschke product

$$f(z) = \prod \frac{\overline{z'_{\nu,n}}}{|z'_{\nu,n}|} \frac{z - z'_{\nu,n}}{1 - \overline{z'_{\nu,n}z}} \prod \frac{\overline{z''_{\nu,n}}}{|z''_{\nu,n}|} \frac{z - z''_{\nu,n}}{1 - \overline{z''_{\nu,n}z}}$$

has the properties asserted in Lemma 3.

Now, we shall prove here the property 3) only.

If we choose appropriate constants r_1, r_2, r_3 and $\zeta \in F$ is a point at

which the set F is of porosity (1/2), $H_{r_1,r_2,r_3}(\zeta)$ contains an infinite number of points from $\{z'_{\nu,n}, z''_{\nu,n}\}$. Hence, for each point ζ at which the set F is of porosity (1/2), if ζ is a horocyclic Fatou point of f(z), then the horocyclic Fatou value at ζ must be 0, so that by the theorem of Lindelöf, the angular Fatou value at ζ must be 0, too. But this contradicts the property 2).

Theorem 7. For each set of σ -porosity $(1/2) E \subset \Gamma$, there exists a bounded analytic function f(z) for which each $\zeta \in E$ is an angular Fatou point and is not a horocyclic angular Fatou point.

Proof. E can be represented in the form of a countable sum of sets E_n nowhere dense on $\Gamma: E = \bigcup E_n$. Suppose that a set E' is a countable sum of closed everywhere disconnected sets $\overline{E_n}: E' = \bigcup \overline{E_n}$. Then E' can also be represented in the form of a not more than countable sum of closed sets F_k without common points (Dolzehnko [4], English translation, p. 8).

From this construction, it is evident that each point $\zeta \in \overline{E_n}$ at which some E_n is of porosity (1/2) is also a point of porosity (1/2) for some F_k .

Now, for each F_k we construct a sequence of zeros $\{z_{\nu,n}^k\}$ and Blsschke product $f_k(z)$, as in Lemma 3. Set

 $f(z) = \sum 2^{-k} f_k(z).$

If $\zeta \in E_k$, all $f_{\nu}(z)(\nu \neq k)$ are continuous at ζ (Lemma 3, 1)), and $f_k(z)$ has an angular limit of modulus 1 (Lemma 3, 2)). Hence each point $\zeta \in E$ is an angular Fatou point. On the other hand, if $\zeta \in E_n$ is a point of porosity (1/2) for F_k , then ζ is not a horocyclic angular Fatou point of $f_k(z)$ (Lemma 3, 3)). Thus each point $\zeta \in E$ is not a horocyclic angular Fatou point of $f_k(z)$ (Lemma 3, 3).

Theorem 7 corresponds to Theorem 4. In this connection, it is natural to ask the following question: Is it true that there fold analogous results to Theorem 7 corresponding to other theorems in section 3? I would guess that it is positive even for holomorphic functions.

References

- Bagemihl, F.: Horocyclic boundary properties of meromorphic functions. Ann. Acad. Sci. Fenn., A I, 385, 1-18 (1966).
- [2] Dragosh, S.: Horocyclic boundary behavior of meromorphic functions. J. d'Anal. Math., 22, 37-48 (1969).
- [3] ——: Horocyclic cluster sets of functions defined in the unit disk. Nagoya Math. J., 35, 53-82 (1969).
- [4] Dolzhenko, E. P.: Boundary properties of arbitrary functions. Izvestija, Acad. Nauk SSSR, 31, 3-14 (1967).
 English translation: Math. of the USSR-IZVESTIJA, 1, 1-12 (1967).
- [5] Yanagihara, N.: Angular cluster sets and oricyclic cluster sets. Proc.
- Japan Acad., 45, 423-428 (1969). [6] Collingwood, E. F., and Lohwater, A. J.: The Theory of Cluster Sets. Camb. Univ. Press (1966).

No. 1]