200. The Multipliers for Vanishing Algebras

By Tetsuhiro SHIMIZU

Department of Mathematics, Tokyo Institute of Technology

(Comm. by Kinjirô KUNUGI, M. J. A., June 12, 1971)

Let G be a locally compact Abelian group with Haar measure m. Let Γ be the dual group of G. We denote by $L^1(G)$ the group algebra of G. For any measurable subset S of G, define L(S) to be the subspace of $L^1(G)$ consisting of all functions which vanish locally almost everywhere on the complement of S. When L(S) forms a subalgebra of $L^1(G)$, we call it a vanishing algebra. If L(S) is a vanishing algebra, then we may assume S is a measurable semigroup [2]. In this paper we shall assume $L(S) \neq \{0\}$ to avoid triviality. Let M(G) be the Banach algebra consisting of all bounded regular Borel measures on G. For any Borel set A, put $M(A) = \{\mu \in M(G) : \mu \text{ is concentrated on } A\}$.

If A is a Banach algebra, then a mapping $T: A \rightarrow A$ is called a multiplier of A if $x(Ty) = (Tx)y(x, y \in A)$.

In this short note, we shall show the characterization of the multipliers for certain vanishing algebras.

Theorem. If S is an open semigroup, then the space \mathfrak{M} of all multipliers for L(S) is $M(S_0)$, where $S_0 = \{t \in G : S \supset S + t \text{ l.a.e.}^*\}$.

Proof. At first, we shall show that for any $T \in \mathfrak{M}$ there is a measure $\lambda \in M(G)$ such that $Tf = \lambda * f$ for each $f \in L(S)$ and $||T|| = ||\lambda||$. For each $f, g \in L(S)$ we have $(Tf)\hat{g} = \hat{f}(Tg)$. Since L(S) is contained in no proper colsed ideal of $L^1(G)$ [3], for each $\gamma \in \Gamma$ we can choose a function $g \in L(S)$ such that $\hat{g}(\gamma) \neq 0$. Define $\varphi(\gamma) = (Tg)(\gamma)/\hat{g}(\gamma)$. The equation $(Tf)\hat{g} = \hat{f}(Tg)$ shows that the definition of φ is independent of the choice of g. For φ so defined it is apparent that $(Tf) = \varphi \hat{f}$. Let ψ be a second function on Γ such that $(Tf) = \psi \hat{f}$ for each $f \in L(S)$. Then since for each $\gamma \in \Gamma$ there is a function $g \in L(S)$ such that $\hat{g}(\gamma) \neq 0$, the equation $(\varphi - \psi)\hat{f} = 0$ for each $f \in L(S)$ reveals that $\varphi = \psi$. Evidently, φ is continuous. Let $\gamma_1, \dots, \gamma_n \in \Gamma$ and a_1, \dots, a_n be any complex numbers. Let t_0 be a point of S. If $\{x_\alpha\}$ is an approximate identity of $L^1(G)$, then we can assume $(x_\alpha)_{t_0} \in L(S)$, where $(x_\alpha)_{t_0}(t) = x_\alpha(t+t_0)$. Put $b_i = a_i(t_0, \gamma_i)(i=1, 2, \dots, n)$ and $y_\alpha = T((x_\alpha)_{t_0})$. We have that

^{*)} By $A \supset B$ l.a.e., we mean that $B \setminus A$ is locally negligible.

Multipliers for Vanishing Algebras

| n

$$\begin{split} \left| \sum_{i=1}^{n} b_{i} \varphi(\gamma_{i}) \right| &= \left| \sum_{i=1}^{n} b_{i} \frac{\hat{y}_{a}(\gamma_{i})}{\hat{x}_{a}(\gamma_{i})(t_{0},\gamma_{i})} \right| \\ &= \left| \sum_{i=1}^{n} \frac{b_{i}}{\hat{x}_{a}(\gamma_{i})(t_{0},\gamma_{i})} \hat{y}_{a}(\gamma_{i}) \right| \\ &= \left| \int_{G} \left[\sum_{i=1}^{n} \frac{b_{i}}{\hat{x}_{a}(\gamma_{i})(t_{0},\gamma_{i})} (-t,\gamma_{i}) \right] y_{a}(t) dm(t) \right| \\ &\leq \left\| y_{a} \right\| \left\| \geq \sum_{i=1}^{n} < \frac{b_{i}}{\hat{x}_{a}(\gamma_{i})(t_{0},\gamma_{i})} (\cdot,-\gamma_{i}) \right\|_{\infty} \\ &\leq \left\| T \right\| \left\| \sum_{i=1}^{n} \frac{b_{i}}{\hat{x}_{a}(\gamma_{i})(t_{0},\gamma_{i})} (\cdot,-\gamma_{i}) \right\|_{\infty}. \end{split}$$

Since $\lim x_{\alpha}(\gamma) = 1$ for each $\gamma \in \Gamma$, we can get

$$\left|\sum_{i=1}^n a_i \varphi(\gamma_i)(t_0,\gamma_i)\right| \leq ||T|| \left\|\sum_{i=1}^n a_i(\cdot,-\gamma_i)\right\|_{\infty}.$$

Appealing now to a well known characterization of Fourier-Stieltjes transforms ([1], p. 32) we conclude there exists a measure $\mu \in M(G)$ such that $\hat{\mu} = (t_0, \cdot)\varphi$ and $\|\mu\| \leq \|T\|$. Define $\lambda(E) = \mu(E - t_0)$ for any Borel set of G, then $\hat{\lambda} = \varphi$. Thus, $Tf = \lambda * f$ for each $f \in L(S)$. Since $||Tf|| = ||\lambda * f|| \le ||\lambda|| ||f||$ for each $f \in L(S)$, we have $||T|| \le ||\lambda||$. It follows that $||T|| = ||\lambda||$. Therefore, we may suppose \mathfrak{M} is the closed subalgebra of M(G).

Next, we shall prove that S_0 is a closed semigroup. It is evident that S_0 is a semigroup. Given any $g \in S \setminus S_0$. Since $(S+g) \setminus S$ is non locally negligible, there is a compact subset C of $(S+g)\setminus S$ such that m(C) > 0. Let χ_c be a characteristic function of C, then there is a neighborhood V_0 of 0 such that

$$\int_{a} |\chi_{c+v}(t) - \chi_{c}(t)| dm(t) = m(((C+v) \setminus C) \cup (C \setminus (C+v)))$$

$$< m(C)/2.$$

for any $v \in V_0$ ([1], p. 32). Thus, $m((C+v) \cap C) \ge m(C)/2 > 0$. Since $(S+g+v)\setminus S \supset (C+v) \cap C$ for each $v \in V_0$, we have that $(V_0+g) \subset G \setminus S_0$. Thus S_0 is closed. Now, we shall show $\mathfrak{M} = M(S_0)$. It is evident $M(S_0) \subset \mathfrak{M}$. Suppose that there is a measure $\mu \in \mathfrak{M}$ such that $\mu \notin M(S_0)$. Then we can assume that μ is a positive measure concentrated on $G \setminus S_0$. Let K be a support of μ . Since $(S+k)\setminus S$ is non locally negligible for any $k \in K \cap (G \setminus S_0)$, there is a non empty compact subset A of $(S+k) \setminus S$ with density property [3]. Put B = A - k, then $(B + K) \setminus S$ is non locally negligible. Let V be an open subset of S such that $0 < m(V) < \infty$ and $B \cap V \neq \emptyset$. Since $\{(B \cap V) + K\} \setminus S \supset A \cap (V + k) \neq \emptyset$, $\{(B \cap V) + K\} \setminus S$ is non locally negligible. If $x \in (B \cap V) + K$, then since $(x - V) \cap K \neq \emptyset$, $0 < \mu$ $((x-V) \cap K) < \infty$. Let χ be a characteristic function of V, then $\chi \in L(S)$. We see that

T. Shimizu

$$\chi * \mu(x) = \int_{G} \chi(x-y) d\mu(y)$$
$$= \int_{K} \chi(x-y) d\mu(y)$$
$$= \mu((x-V) \cap K) > 0$$

for each $x \in (V+K) \setminus S$. Since $(V+K) \setminus S$ is non locally negligible, $\chi * \mu \notin L(S)$. This completes the proof.

References

- [1] W. Rudin: Fourier Analysis on Groups. Interscience, New York (1962).
- [2] T. Shimizu: On a problem of vanishing algebras. Proc. Japan Acad., 46, 3-4 (1970).
- [3] A. B. Simon: Vanishing algebras. Trans. Amer. Math. Soc., 92, 154-167 (1959).