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186. A Semigroup.Theoretic View o
Projective Class Groups

By Tom HEAD*)

(Comm. by Kinjir.5 KUNt(I, M. .A., May 12, 1971)

This note has arisen from an interest in subsumming the basic
description of the projective class groups of rings and their representa-
tion as quotients of Grothendieck groups into the elementary theory of
commutative semigroups. This goal is reached in 2 by means of a
method given in 1 of constructing quotient monoids modulo subtrac-
rive subsemigroups. The quotient construction of 1 provides a con-
venient vocabulary for a discussion of greatest monoid images which is
given in 3. An interpretation of 1 and 3 in terms of category
concepts is appended as 4. All semigroups considered here will be
commutative and additive notation will be used.

1. The quotient monoids. A subsemigroup B of a commutative
semigroup A is subtractive if whenever a+b--b’, 2or a e A and b,
b’ e B, we have a e B. To give amiliarity with the definition we list
three elementary observations" The subtractive subsemigroups o a
group are precisely the subgroups. A proper ideal is never subtrac-.
rive. If C is a subtractive subsemigroup of B and B is a subtractive
subsemigroup of A, then C is subtractive in A.

Let B be a subtractive subsemigroup of a commutative semigroup
A. We use B to define a relation p(B) inA" For eacha, a’eAwe
write ap(B)a’ i there re b, b’ e B or which a+b=a’+b’. It is esy
to verify that p(B) is a congruence relation and that whenever we have
ap(B)b, or a e A and b e B, we have a e B. We denote the quotient
semigroup A/p(B) by the shorter orm A/B and we observe that A/B
is a monoid with B as identity. I A is a group, then A/B coincides
with its usual meaning in group theory.

For each homomorphism h" A-M o a commutative semigroup A
.onto a monoid M, we define the kernel o h to be the subset ker (h)
={a e A]h(a)-O}. We list three elementary observations concerning

kernels" Each kernel is a subtractive subsemigroup. For each sub-
tractive subsemigroup B o each commutative semigroup A, the kernel
o the natural map A-A/B is B. A subsemigroup B o a commutative
semigroup A is the kernel of a homomorphism of A onto a monoid if
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and only if B is subtractive.
Our undamental tool is the following universal property of natural

maps onto quotients.
Lemma 1. If h" A-+M is a homomorphism of a commutative

semigroup A onto a monoid M and B is a subtractive subsemigroup of
ker(h), then h-h’k where k is the natural map A-A/B and h’ is a
homomorphism A /BM.

Proof. Let ap(B)a’. Then there are b, b’eB or which a/b
=a’+b’ and we compute" h(a)-h(a)+ h(b)=h(a+b)--h(a’+b’)--h(a’)
+ h(b’)=h(a’). Thus h induces a unction h’" A/B-M for which h-h’k
and such a unction is necessarily a homomorphism.

Our next objective is to describe the smallest subtractive subsemi-
group containing a given subsemigroup. Accordingly, for subsemi-
groups X and Y of a commutative semigroup A, we define" X-Y

{a e A a + y x or some x e X and y e Y}. The following three obser-
vations are easily verified" X--Y is a subsemigroup. X--X is sub-
tractive. Each subtractive subsemigroup of A that contains X also
contains X--X. These observations together with Lemma 1 give"
For each subsemigroup B of A, every homomorphism h of A onto a
monoid which satisfies h(B)=0 possesses the natural map A-A/(B--B)
as a right factor.

Example. Let R be a ring. Let A be the set of isomorphism
types of finitely generated left R-modules. The operation of forming
the direct sum of two modules provides an operation for A with respect
to which A is a commutative monoid. Let B be the cyclic subsemigroup
of A generated by the isomorphism type oi R. We make four inter-
pretations" B consists of the isomorphism types of the finitely gener-
ated ree modules. B--B consists of the types of those summands of
finitely generated ree modules which have ree complementary
summands. B--A consists of the types of finitely generated projective
modules. Finally, the quotient monoid (B--A)/(B--B) is a group and
it may be recognized as the (left) projective class group of the ring R
[2, 6].

We are interested in viewing the projective class groups of rings
in as broad a context as possible within the theory of commutative semi-
groups. The quotient (B-- A) /(B-B) is easily recognized as the group
of units o the monoid A/(B--B). Our attention will therefore be
ocused on the group o units of an arbitrary quotient monoid. The
projective class groups are commonly discussed in terms of Grothendick
groups and our discussion of groups of units will extend the known rela-
tionship for the projective class groups.

2. The group of units of a quotient monoid. Throughout this
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paragraph A will denote a commutative semigroup and B a subsemi-
group of A. Our object of study is the group of units of the quotient
monoid A/(B--B). There is no difficulty in locating the units: The
group of units of A/(B--B) is (B--A)/(B--B). Our interest centers on
relating the structure of this group to Grothendieck groups.

We will use a specific description of the Grothendieck groups: Let
X be a commutative semigroup. Let a be the relation in X defined by:
xax’ if x+ x"=x’+ x" for some x" e X. Then a is a congruence rela-
tion and is the finest one for which X/a is cancellative. By the
Grothendieck group of X we will mean the group, Gro (X), of frac-
tions of X/a. The natural map XX/a followed by the inclusion

X/a Gro (X) gives us a cannonical homomorphism g X-Gro (X).
Each homomorphism X-Y between commutative semigroups induces
a homomorphism X/aY/a which extends uniquely to a homomor-
phism Gro (X)Gro (Y). A commutative diagram results:

X Y

X/a Y/a

Gro (X) ---* Gro (Y).
One consequence is the o]lowing standard characterization of the
Grothendieck groups: Any homomorphism of X into a group pos-
sesses the map g: X-Gro (X) as a right factor.

Theorem. For each subsemigroup B of each commutative semi-
group A the group (B--A) / (B-- B) of units of A / (B-- B) is isomorphic
with Gro (B--A) / Gro (B).

We begin the proo by explaining the manner in which we may re-
gard Gro (B) as a subgroup o Gro (B--A). The inclusions BB--B
B--A provide homomorphisms Gro (B)Gro (B--B)-.Gro (B--A).
That these two maps are monomorphisms is a consequence of:

Lemma 2. If X and Y are subsemigroups of A for which XY
X--A then the map Gro (X)-.Gro (Y) provided by Xc Y is a mono-
morphism.

Proof. It is enough to verify that the related map X/a-*Y/a is
one-one. To do this we suppose that x/y--x’+y or some x, x’e X
and y e Y. Since YcX--A there is an x" e X and an a e A for which
y+ a x". Then x + x"= x’ + x" rom which the one-one property fol-
lows.

One next concern is to verify that the map Gro (B)Gro (B--B)
is an isomorphism. For this purpose we will refer to the commutative
diagram"
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B c B--B

h
Gro (B) Gro (B--B).

Each element o Gro (B--B) is of the orm g(a)--g(a) with a,
a. e B--B. There are bl, b, b2, b e B such that al + bl--b and a2+ b2

b’=b We compute g2(a) g(a) g2(bl) g(b) g()+g(b2) hg(b’)
--hg(b)-hg(b) + hg(b2), which is in the image of h.

On replacing the monomorphisms with inclusion maps we have the
commutative diagram"

B c B--B

Gro (B)=Gro (B--B)Gro (B--A)-.Gro (B--A)/Gro (B),
where i, ], and k are constructed as follows" The composite map
B--A-Gro (B--A)/Gro (B) annihilates B--B and therefore also has a
monoid as its image. Consequently by Lemma 1 a homomorphism i is
induced. Since (B--A)/(B--B)is a group, a homomorphism ] is in-
duced. Since ] must annihilate the image of B--B-Gro (B--B) and
since this image generates Gro (B--B), it follows that ] annihilates
Gro (B--B)=Gro (B). Consequently, a homomorphism k is induced.
A chase of the diagram will confirm that both ik and ki are identity
maps. The chase is facilitated by observing that the image of B--A
in Gro (B--A)/Gro (B) is a generating set. This completes the proof
of the theorem.

Assume now that B is cyclic, which is the case in the example con-
cerning the projective class groups. If B is infinite, then Gro (B)Z,
the additive group of integers. In this case the group of units of
A/(B--B) has the form Gro (B--A)/Z. If B is finite with b as a gen-
erator, then there exist positive integers m and n which are least sub-
ject to mb--(m+n)b. In this case Gro (B)--Z, the additive group of
integers modulo n, and the group of units has the form Gro (B--A)/Z.

3. Greatest monoid images. A homomorphism h: AM of a
commutative semigroup A onto a monoid M is a greatest homomor-
phism of A onto a monoid if every homomorphism of A onto a monoid
possesses h as a right factor. When h is such a greatest homomor-
phism, we call M a greatest monoid image of A. The general study of
greatest images of given type has been initiated in [1, 11.6] and [3].
The quotient monoid construction provides a vocabulary that allows an
elementary discussion of the existence and structure of greatest monoid
images of commutative semigroups. The discussion will be given in
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terms of the following concept: An element p of a commutative semi-
group A will be called a pre-identity if for every a e A there are posi-
tive integers m and n for which p + ma=na.

Proposition. Let A be a commutative semigroup and P be the set
of pre-identities of A. If P is not empty then P is a subtractive sub-
semigroup of A and AlP is a greatest monoid image of A. If P is
empty then A has no greatest monoid image.

Proof. The elementary verifications of P +PP will be omitted.
Suppose that P is not empty and that h: AM is a homomorphism of
A onto a monoid. Let p be ny element of P and let a be an element
of A for which h(a)--0. For some positive integers m, n we have
p+ma=na which yields h(p)=0. Since Pker(h), we conclude by
Lemma 1 that the natural mp A--,A/P is a right fctor of h s re-
quired.

Suppose now that h: AM is a greatest map of A onto a monoid
and that p is an element of ker (h). To complete the proof we need
only show that p is a pre-identity. Let a be any element of A and let
B be the cyclic subsemigroup it generates. The natural map
AA/(B--B) must possess h as a right factor and consequently we
hve 79 e B--B. Thus p + ma--na for some positive integers m, n and
we conclude that p is pre-identity.

4. A categorical footnote. Let A be the ctegory whose objects
are commutative semigroups and whose morphisms consist of the iden-
tity maps and of those homomorphisms h" X--,Y for which Y is
monoid and 0 e h(X). Thus l contains the category C of commutative
monoids as a full subcategory. The quotient monoids of 1 are essen-
tially the cokernels of 1 If h: X--,Y is a morphism in 1 and B h(X),
then we observe from Lemma 1 that the natural map YY (B--B) is
a cokernel for h. When Y is a monoid and A =ker (h), Lemma 1 also
provides a canonical factorization expressed by the commutative dia-
gram

h
X Y

X/A
where h’ is a subjective homomorphism with trivial kernel. We may
interpret 3 as a determination of those objects in A which possess
reflections in C. Accordingly, 3 shows that the full subcategory B o
A, hving as its objects the commutative semigroups with pre-
identities, is the unique maximal subcategory of A which coniains C as
a reflective subcategory of itself.

We close with a question" Which commutative semigroups S have
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the property that for each commutative semigroup A and each sub-
tractive subsemigroup BcA, the homomorphism S(R)BS(R)A induced
by the inclusion is one-one?
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