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186. A Semigroup-Theoretic View of
Projective Class Groups

By Tom HEAD®
(Comm. by Kinjiré KUNUGI, M. J. A.,, May 12, 1971)

This note has arisen from an interest in subsumming the basic
description of the projective class groups of rings and their representa-
tion as quotients of Grothendieck groups into the elementary theory of
commutative semigroups. This goal is reached in §2 by means of a
method given in § 1 of constructing quotient monoids modulo subtrac-
tive subsemigroups. The quotient construction of § 1 provides a con-
venient vocabulary for a discussion of greatest monoid images which is
given in §8. An interpretation of §1 and §3 in terms of category
concepts is appended as §4. All semigroups considered here will be
commutative and additive notation will be used.

1. The quotient monoids. A subsemigroup B of a commutative
semigroup A is subtractive if whenever a+b=>b’, for ac A and b,
b’ e B, we have ac¢ B. To give familiarity with the definition we list
three elementary observations: The subtractive subsemigroups of a
group are precisely the subgroups. A proper ideal is never subtrac-
tive. If C is a subtractive subsemigroup of B and B is a subtractive
subsemigroup of A, then C is subtractive in A.

Let B be a subtractive subsemigroup of a commutative semigroup
A. We use B to define a relation p(B) in A: For each a, '€ A we
write ap(B)a’ if there are b, b’ € B for which a +b=0a'+b’. It is easy
to verify that o(B) is a congruence relation and that whenever we have
ap(B)b, forac A and be B, we have a € B. We denote the quotient
semigroup A/p(B) by the shorter form A/B and we observe that A/B
is a monoid with B as identity. If A is a group, then A/B coincides
with its usual meaning in group theory.

For each homomorphism h: A—M of a commutative semigroup A
onto a monoid M, we define the kernel of 7 to be the subset ker (k)
={a e A|Ma)=0}. We list three elementary observations concerning
kernels: Each kernel is a subtractive subsemigroup. For each sub-
tractive subsemigroup B of each commutative semigroup A4, the kernel
of the natural map A—A/BisB. A subsemigroup B of a commutative
semigroup A is the kernel of a homomorphism of A onto a monoid if
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and only if B is subtractive.

Our fundamental tool is the following universal property of natural
maps onto quotients.

Lemma 1. If h: A—M is a homomorphism of a commutative
semigroup A onto a monoid M and B is a subtractive subsemigroup of
ker (h), then h=nk where k is the natural map A—A|/B and b’ is a
homomorphism A/B—M.

Proof. Let ap(B)a’. Then there are b, b’e B for which a+b
=a’+ b’ and we compute: h(a)=~h(a)-+ h(b)=h(a+b)=h(a’+b)=h(a’)
+ h(b)=na'). Thus h induces a function »’: A/B—M for which h="nr'k
and such a function is necessarily a homomorphism.

Our next objective is to describe the smallest subtractive subsemi-
group containing a given subsemigroup. Accordingly, for subsemi-
groups X and Y of a commutative semigroup A, we define: XY
={ae A|la+y=2x for some x € X and y € Y}. The following three obser-
vations are easily verified: X—Y is a subsemigroup. X—X is sub-
tractive. Each subtractive subsemigroup of A that contains X also
contains X—X. These observations together with Lemma 1 give:
For each subsemigroup B of A, every homomorphism h of A onto a
monoid which satisfies h(B)=0 possesses the natural map A—A[(B—B)
as a right factor.

Example. Let R be a ring. Let A be the set of isomorphism
types of finitely generated left R-modules. The operation of forming
the direct sum of two modules provides an operation for A with respect
to which A is a commutative monoid. Let B be the cyclic subsemigroup
of A generated by the isomorphism type of R. We make four inter-
pretations: B consists of the isomorphism types of the finitely gener-
ated free modules. B—B consists of the types of those summands of
finitely generated free modules which have free complementary
summands. B—A consists of the types of finitely generated projective
modules. Finally, the quotient monoid (B—A4)/(B—B) is a group and
it may be recognized as the (left) projective class group of the ring R
[2,§6].

We are interested in viewing the projective class groups of rings
in as broad a context as possible within the theory of commutative semi-
groups. The quotient (B—A)/(B—B) is easily recognized as the group
of units of the monoid A/(B—B). Our attention will therefore be
focused on the group of units of an arbitrary quotient monoid. The
projective class groups are commonly discussed in terms of Grothendick
groups and our discussion of groups of units will extend the known rela-
tionship for the projective class groups.

2. The group of units of a quotient monoid. Throughout this
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paragraph A will denote a commutative semigroup and B a subsemi-
group of 4. Our object of study is the group of units of the quotient
monoid A/(B—B). There is no difficulty in locating the units: The
group of units of A/(B—B) is (B—A)/(B—B). Our interest centers on
relating the structure of this group to Grothendieck groups.

We will use a specific description of the Grothendieck groups: Let
X be a commutative semigroup. Let o be the relation in X defined by :
xox' if x+4+a’=x"+a" for some #”” ¢ X. Then o is a congruence rela-
tion and is the finest one for which X/o is cancellative. By the
Grothendieck group of X we will mean the group, Gro (X), of frac-
tions of X/o. The natural map X—X/¢ followed by the inclusion
X/oCGro (X) gives us a cannonical homomorphism g: X—Gro (X).
Each homomorphism X—Y between commutative semigroups induces
a homomorphism X/6—Y /o which extends uniquely to a homomor-
phism Gro (X)—Gro (Y). A commutative diagram results:

X — Y

l l

X/e —> Y/o

l l

Gro (X) — Gro (Y).
One consequence is the following standard characterization of the
Grothendieck groups: Any homomorphism of X into a group pos-
sesses the map g: X—Gro (X) as a right factor.

Theorem. For each subsemigroup B of each commutative semi-
group A the group (B—A)/(B—B) of units of A/(B—B) is isomorphic
with Gro (B—A)/Gro (B).

We begin the proof by explaining the manner in which we may re-
gard Gro (B) as a subgroup of Gro (B—A). The inclusions BCB—B
CB—A provide homomorphisms Gro (B)—Gro (B—B)—Gro (B—A).
That these two maps are monomorphisms is a consequence of :

Lemma 2. If X and Y are subsemigroups of A for which XCY
CX—A then the map Gro (X)—Gro (Y) provided by XCY is a mono-
morphism.

Proof. It is enough to verify that the related map X/o—Y /o is
one-one. To do this we suppose that x+y=a'+y for some z, ¥’ ¢ X
and ye Y. Since YCX—A thereis an 2’ ¢ X and an a € A for which
Yy+a=z". Then x+x"=x'+2" from which the one-one property fol-
lows.

One next concern is to verify that the map Gro (B)—Gro (B—B)

is an isomorphism. For this purpose we will refer to the commutative
diagram:
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B C B-—-B

101 lgz
Gro (B) —> Gro (B—B).

Each element of Gro(B—B) is of the form g¢g,(a,)—g,(a;) with a,,
a,e B—B. There are b, bi, b,, b, e B such that a,+b,=b; and a,+ b,
=b;. We compute: g,(a,)—g,(a,)=9,(b) — (b)) — g,(bD) + 9:(b,) =hg,(b)
—hg(b)—hg, (b)) + hg,(b,), which is in the image of h.

On replacing the monomorphisms with inclusion maps we have the
commutative diagram :

B c B-B C B—A—>B-A)/B-B
7 i k

Gro (B)=Gro (B—B)cGro (B—A)—Gro (B—A)/Gro (B),
where 7, 7, and k are constructed as follows: The composite map
B—A—Gro (B—A)/Gro (B) annihilates B—B and therefore also has a
monoid as its image. Consequently by Lemma 1 a homomorphism % is
induced. Since (B—A)/(B—B) is a group, a homomorphism j is in-
duced. Since 7 must annihilate the image of B—B—Gro (B—B) and
since this image generates Gro (B—B), it follows that 7 annihilates
Gro (B—B)=Gro (B). Consequently, a homomorphism k is induced.
A chase of the diagram will confirm that both ik and k¢ are identity
maps. The chase is facilitated by observing that the image of B—A
in Gro (B—A)/Gro (B) is a generating set. This completes the proof
of the theorem.

Assume now that B is cyclic, which is the case in the example con-
cerning the projective class groups. If B is infinite, then Gro (B)=Z,
the additive group of integers. In this case the group of units of
A /(B—B) has the form Gro (B—A)/Z. If B is finite with b as a gen-
erator, then there exist positive integers m and n which are least sub-
ject to mb=(m+mn)b. In this case Gro (B)=Z,, the additive group of
integers modulo n, and the group of units has the form Gro (B—A)/Z,.

3. Greatest monoid images. A homomorphism h: A—M of a
commutative semigroup A onto a monoid M is a greatest homomor-
phism of A onto a monoid if every homomorphism of A onto a monoid
possesses k as a right factor. When 7 is such a greatest homomor-
phism, we call M a greatest monoid image of A. The general study of
greatest images of given type has been initiated in [1, § 11.6] and [3].
The quotient monoid construction provides a vocabulary that allows an
elementary discussion of the existence and structure of greatest monoid
images of commutative semigroups. The discussion will be given in
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terms of the following concept: An element p of a commutative semi-
group A will be called a pre-identity if for every a ¢ A there are posi-
tive integers m and n for which p+ma=mna.

Proposition. Let A be a commutative semigroup and P be the set
of pre-identities of A. If P is not empty then P is a subtractive sub-
semigroup of A and A/P is a greatest monoid image of A. If Pis
empty then A has no greatest monoid image.

Proof. The elementary verifications of P+ PC P will be omitted.
Suppose that P is not empty and that #: A—M is a homomorphism of
A onto a monoid. Let p be any element of P and let a be an element
of A for which h(a)=0. For some positive integers m, n we have
p+ma=na which yields h(p)=0. Since PCker (k), we conclude by
Lemma 1 that the natural map A—A/P is a right factor of & as re-
quired.

Suppose now that h: A—M is a greatest map of A onto a monoid
and that p is an element of ker (). To complete the proof we need
only show that p is a pre-identity. Let a be any element of A and let
B be the cyclic subsemigroup it generates. The natural map
A—A/(B—B) must possess h as a right factor and consequently we
have pe B—B. Thus p+ma=mna for some positive integers m, n and
we conclude that p is a pre-identity.

4. A categorical footnote. Let 4 be the category whose objects
are commutative semigroups and whose morphisms consist of the iden-
tity maps and of those homomorphisms k: X—Y for which Y is a
monoid and 0 € (X). Thus 4 contains the category C of commutative
monoids as a full subcategory. The quotient monoids of § 1 are essen-
tially the cokernels of 4: If h: X—Y is a morphism in 4 and B=h(X),
then we observe from Lemma 1 that the natural map Y—-Y/(B—B) is
a cokernel for ~. When Y is a monoid and A =ker (k), Lemma 1 also
provides a canonical factorization expressed by the commutative dia-
gram

x My

| u

x/A-B
where %’ is a subjective homomorphism with trivial kernel. We may
interpret §3 as a determination of those objects in 4 which possess
reflections in C. Accordingly, § 3 shows that the full subcategory B of
A, having as its objects the commutative semigroups with pre-
identities, is the unique maximal subcategory of 4 which coniains C as

a reflective subcategory of itself.

We close with a question: Which commutative semigroups S have
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the property that for each commutative semigroup A and each sub-

tractive subsemigroup BC A, the homomorphism S®B—-S®A induced
by the inclusion is one-one?
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