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(Comm. by Kinjir5 KUNU(I, M. J. ,., Sept. 13, 1971)

1o Introduction. Let H and W be two real separable Hilbert
spaces and V be a real separable reflexive Banach space with V W H.
Let V be dense in W and in H and the natural injections of V into W
and of W into H be respectively continuous and compact. We identify
H with its dual"

VWHW*V*
where W* and V* are the duals of W and V, respectively. The pair-
ing between V and V* is denoted by (,) and that of W and W* by (, .

We consider the following second order differential equation
(1.1) u" + A(u) + Bu’=f
with initial conditions
(1.2) u(0) =u0, u’(0) =u,
where u=u(t), u’=du/dt, u"=du/dt and data u0, u, f are given.

Assume that the nonlinear operator A" V-V* has the ollowing
properties"

1) A is hemicontinuous and IIA(u)ll.<__c Ilull-, pl, cO.
2) A is monotone, i.e., (A(u)-A(v), u-v)>=O, Vu, v e V.
3) (A(u), u) u lily.
4) A(u) is Frchet differentiable at every u e V.
5) A(u) is strongly homogeneous of degree p--1 in the sense of

Dubinskii [1], i.e., or every u, 2 e V
(1.3) (A’(u), u)=(A’(u)u, )=(p-1)(A(u), ])
where A’(u) is a Frchet derivative.

Let B" W-,W* be a bounded linear operator associated with a
bounded symmetric bilinear form b(.,.) on W, i.e.,

b(u, v) l<= u IIw v IIw, b(u, v) b(v, u),
b(u, v)= (Bu, v}, Vu, v e W,

such that
(1.4) b(u,u)>=allulv-fl ]lul], a, fl>O,
and that if u,-.u weakly in W as n-c,
(1.5) lim inf b(u,, u,)>= b(u, u).

The main result of this note is the following theorem.
Theorem 1. Suppose that Uo e V, ul e H and f e L2(O, T H). Then

there exists at least one function u such that
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(1.6) u(t) e L(O, T; V),
(1.7) u’(t) e L(O, T H) L(O, T W)
(1.8) u"(t) e L(O, T; V*)
and satisfies (1.1) and (1.2).

The proof of Theorem I is stated in Section 2. In Section 3, as
applications, the existence of the weak solutions of. the initial-Dirichlet
boundary value problem for the equation of the form

t =, x x 3t f’

v= v

will be established. When n--l, the equation (1.9) was studied by
Greenberg, MacCamy and Mizel [2] and Greenberg [3].

2. Proof of Theorem 1.
Lemma 1. For u(t) e C([0, T]; V), we have

(2.)
P P
1
p p

Proof. By the chain rule, we have

(-tA(u(t)), u(t)) (A’(u(t))u’(t), u(t))

(p-- 1)(A(u(t)), u’(t))
since A(u) is strongly homogeneous of degree p--1. Then we get

d (n(u(t)), u(t))=p(n(u(t)), u’(t))
dt

which implies (2.1). q.e.d.
The following lemma can be found in [4].
Lemma 2. Let X be a reflexive separable Banach space. Then

there exists a separable Hilbert space Y, being dense in X, such that
the injection of Y into X is continuous.

Hence, we can construct a separable Hilbert space Hc W, being
dense in V, such that the injection of H into V is continuous. Then
the injection of H into H is compact. Therefore we have

Lemma :}. The spectral problem"
(2.2) (w, v)=(w, v),, Vv e H,
has the sequence of non zero solutions w corresponding to the sequence

of eigenvalues "(2.3) (w, v)=2(w, V)H, VV e H,
where (,) and (,) are the scalar products in H and H, respectively.

In order to prove Theorem 1, we shall employ the Galerkin’s
method. We use the sequence of the functions w as the basis of H.
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Lemma 4.
(2.7)
(2.8)
(2.9)
(2.10)
and
(2.11)

Proof.

We look for an approximate solution u(t) in the form"

u(t):, g(t)w, g(t) e C[0, T],
i=l

where the unknown functions g are determined by the following sys-
tem of ordinary differential equations"
(2.4) (u(t), w) + (A(u(t)), w) + b(u(t), w):(f(t), w) lg]gm,
with initial conditions"

(2.5) u(O)--Uo, Uo-- awUo in V strongly as m,
i=1

(2.6) u(0):u, u=flwu in H strongly as m.
i=l

Then we have
There exists a constant c independent of m, such that

ulo,c,

Multiplication o the i-th equation in (2.4) by g, summa-
tion over i rom 1 to m, integration with respect to t and Lemma 1 give

1 1uAt)ll/ u(t)ll+(2.12) 11’
1 1
2 -o

(-(s)’f u(8))d8

from which it follows that

u(t)ln+-- [iu(t)[[+a llu(s)li ds(2.13)
2 p o

c1+ I’
The inequality (2.13) and our hypotheses on A and B yield (2.7)-(2.10).

Let P be the projection of H[w,... ,w] (-the space spanned

by Wl, ., w)" Ph-- (h,w)w.
i=l

Then we have P e (H, H) P(,)g c.
Since Hc V W, we get

P]l(,) g c and
which imply

]Pll(.,.) gc and lPll(,,.) gc.
The equation (2.4) may be written as

" PA(u) *u --PBu+Pf
which assures (2.11). q.e.d.

From Lemma 4 we see that there exist a function u and a sub-
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sequence u, of u such that
(2.14)
(2.15)

(2.16)
(2.17) u,(T)u(T)
(2.18) u(T)u’(T)
(2.19) A(u,)-Z
and
(2.20)

in L(0, T V) weakly star,
in L(0, T H) weakly star and in L(0, T; W)
weakly,
in L(0, T; H*) weakly,
in W weakly,
in H weakly,
in L(0, T V*) weakly star,

Bu’,Bu’ in L(O, T; W*) weakly.
Since the injections of V into H and o W into H are compact, we

can urthermore assume that
(2.21) u,u in L(0, T; H) strongly,
(2.22) u,(T)u(T) in H strongly
and
(2.23) u’,-.u’ in L(0, T; H) strongly.

To show that the unction u(t) is a solution of (1.1), (1.2), it is
sufficient to prove that

Z =A(u).
Multiplying (2.4) by an arbitrary smooth iunction a(t), integrating

over [0, T] and integrating the first term by parts, we hve

--.[i(u’(t) cd(t)w)dt+ .[i’(A(u(t)) a(t)w)dt

=.[i(f(t), a(t)w,)dt + (u(0), a(O)w)- (u’AT),

Taking the limit oi both sides with m=/, ] fixed, we get
T

which implies

(2.25) --i’(u’(t),,,’(t))dt + ;(), ,(t))dt + ;b(u’(t), ,(t))dt

=.l:(f(t), +(t))dt Ju(Ux, +(O))--(u’(T), +(T))

for any q e G, where G denotes a family of functions defined by
G={+1+ e 52(0, T; V), +’ e L2(0, T; H)}.

In particular, setting p--u, we have

I[u’[I}dt+ (Z, u)dt+ b(u(T), u(T))-- b(uo, Uo)
(2.26)

Jo
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The monotonicity of A gives

(2.27) X--.II(A(u)-A(v), u,-v)dt>=O, Vv e L’(O. T; Y).

From (2.4) we have

b(u.(T),

+ (u’.(0), u(O))--(u’.(T), u.(T))
from which it follows that

Hence, in virtue of (1.5) and (2.17) we get

lim inf X.<]:,u’] dr--b(u(T) u(T))+ b(uo, no)

(2.28) +I(f,u)d+(Ul, Uo)--(uf(T),

Combining (2.26) with (2.28), we have

I2’(Z-A(v), u-v)dtO.
Then, a well-known argument of the theory of monotone operators gives

Z =A(u).
From (1.1), we have

u"= --A(u)--Bu’ + f L(O, T V*).
This completes the proof of Theorem 1.

3. Some Examples, Let 9 be a bounded domain in R with a
sufficient smooth boundary 39. Points in 9 are denoted by x=(x, ...,
x) and the time variable is denoted by t. We consider the following
initial boundary value problem

Ot =1 0 Ot =f’

(.) (z, o) ,(z), O(z, o) / Ot l(Z),
(g.g) (z, t) 0 on 09 x [0, T],
where f(, t), () and (z) are given functions and T is an arbitrary
positive number.

Put
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(3.4)

and

(3.5)

A(u) =E xi

b(u, v)-- 3u 3v dx.
=1 x x

If we take H=L(/2), W= W,(tg) and V=W,(tg), we easily see
that our hypotheses on A and B are satisfied. Furthermore the well-
known theorem of Sobolev tells us that if

rl+n__ n
2 2p

then
H-- W,(9) W,(2)

and the injection of W,(9) into W,(9) is continuous. Hence, we
have

Theorem 2. For each f e L2(0, T; L2(/2)), u0 e WI,P(tg), ule L(tg),
the initial boundary value problem (3.1)-(3.3) has a solution u(x, t)
e L(O, T; W,p(2)) with

3u(x, t) 3t e L(0, T L(/2)) L-(0, T W,(9))
and

u(x, t) / Ot e L2(O, T;
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