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212. Some Nonlinear Ewolution Equations of Second Order
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(Comm. by Kinjird KuNUGI, M. J. A., Sept. 13, 1971)

1. Introduction. Let H and W be two real separable Hilbert
spaces and V be a real separable reflexive Banach space with VC WC H.
Let V be dense in W and in H and the natural injections of V into W
and of W into H be respectively continuous and compact. We identify
H with its dual:

VCWCHCW*CV*
where W* and V* are the duals of W and V, respectively. The pair-
ing between V and V* is denoted by (, ) and that of W and W* by {, >.

We consider the following second order differential equation

(1.1) U’ +Awu)+Bu' = f
with initial conditions
1.2) u(0) =1u,, w'(0)=wu,,

where u=u(t), v'=du/dt, v’ =d*u/dt* and data w,, %,, f are given.
Assume that the nonlinear operator A: V—V* has the following
properties :
1) A is hemicontinuous and | A@)|«=c||u]3™ p>1, ¢>0.
2) A is monotone, i.e., (A(u)—AW), u—v)=0, Yu, ve V.
3) (Aw),w)=|lu|}.
4) A(u) is Fréchet differentiable at every ue V.
5) A(w) is strongly homogeneous of degree p—1 in the sense of
Dubinskii [1], i.e., for every u, neV
(1.3) (A" Wy, w) = (A’ (wyu, 7) =0 — (A W), 7)
where A’(u) is a Fréchet derivative.
Let B: W—W* be a bounded linear operator associated with a
bounded symmetric bilinear form b(.,-) on W, i.e.,
[b(u, V)| = wllw | V]lw, b(u, v)=b(v, u),
b(u, v)=<{Bu, v), Yu,ve W,

such that

1.9 b(u, W= a||ully— B || vl a, >0,
and that if u,—u weakly in W as n— oo,

(1.5) lim inf b(u,, u,) = b(u, w).

The main result of this note is the following theorem.
Theorem 1. Supposethatu,eV,u, e Hand f e L*0,T ; H). Then
there exists at least one function u such that
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1.6) u(t) e L=(0,T; V),
a.n w (@) e L=(0,T; HYNL*0,T; W)
1.8) w’(t) e LX0,T; V*)

and satisfies (1.1) and (1.2).

The proof of Theorem 1 is stated in Section 2. In Section 3, as
applications, the existence of the weak solutions of the initial-Dirichlet
boundary value problem for the equation of the form

ou & 0 [ou\*'  ou
1.9 — —AY®
(1.9) ot? Z:i 0x; (6931) Aat I
A’I)=Z 827) ’ p>1’
= 0w

will be established. When n=1, the equation (1.9) was studied by
Greenberg, MacCamy and Mizel [2] and Greenberg [3].

2. Proof of Theorem 1.

Lemma 1. For u(t) e CY[0, T]; V), we have

j‘(A(u(s)), w(s))ds = L(A@(®)), u() — L (AwO)), u(0))

0 D P

2.1) 1 1

=L juip — L juoy.
p P

Proof. By the chain rule, we have
(%A(u(t», ) = (A @O (B), u(®)

=(p—DA®@), w®)
since A(w) is strongly homogeneous of degree p—1. Then we get

%(A(u(t)), w®)) =pA (@), W)

which implies (2.1).

The following lemma can be found in [4].

Lemma 2. Let X be a reflexive separable Banach space. Then
there exists o separable Hilbert space Y, being dense in X, such that
the injection of Y into X is continuous.

Hence, we can construct a separable Hilbert space H C W, being
dense in V, such that the injection of A into V is continuous. Then
the injection of A into H is compact. Therefore we have

Lemma 3. The spectral problem:

(2.2) W, Vg=Aw,v)y, YveH,

has the sequence of non zero solutions w; corresponding to the sequence
of eigenvalues 4;:

(2.3) (wj, V)g=2A;,(w,, vy, YveH, 2,>0,

where (,)g and (, )z are the scalar products in H and H , respectively.

In order to prove Theorem 1, we shall employ the Galerkin’s
method. We use the sequence of the functions w; as the basis of a.

q.e.d.
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We look for an approximate solution u,,(t) in the form:
Un®)=3 gin®wis  gin(®) € C10, T,

where the unknown functions g,,, are determined by the following sys-
tem of ordinary differential equations:

(2.4) (U (D), wy) + (AWn(t), wy) + bur, ), w) =(f (), w,) 1<j<m,
with initial conditions:

(2.5) U (0) =Ugyp, uom=f] AmW;—U, in V strongly as m—co,
i=1

(2.6) 1, (0) =u,,,, ulm:f] Binwi—u, in H strongly as m—oo.
i=1

Then we have
Lemma 4. There exists a constant ¢ independent of m, such that

Q2.7 %allLeoo, v =6,
(2.8 e\l oo o, 711y 0 220,290 S €
(29) ”A(um)ul,m(o,T;V*) é ¢,
(2.10) | Bl 220, 750 = €5
and

(2.11) % | 220, 7500 S €.

Proof. Multiplication of the i-th equation in (2.4) by ¢}, summa-
tion over ¢ from 1 to m, integration with respect to ¢t and Lemma 1 give

@.12) % ||u:n(t)||z+% lun(®p+ [ (s), wo)ds

= L O+ SOl + [ (75, wids
2 D 0
from which it follows that
(2.13) 1 | Un (DI + 1 | %a (D% + ar lun(5 ds
2 P 0

o(t+ [ unls as).

The inequality (2.13) and our hypotheses on A and B yield (2.7)-(2.10).
Let P, be the projection of H—[w,, - .-, w,,] (=the space spanned

DY Wiy« -y W)t Prh=3" (h, W) ;.
=1

Then we have P, e L(H,H); |Pnlramsec.

Since HCVCW, we get
||Pm||_£<FI,V)§C and [P, | pw=c
which imply
| PEN porsan=c and || PEl _paremm =c.
The equation (2.4) may be written as
= —P}A(u,)—P}Bu,+ P} f,

which assures (2.11). q.e.d.

From Lemma 4 we see that there exist a function » and a sub-
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sequence u, of u,, such that

2.14) u,—U in L~(0, T ; V) weakly star,

(2.15) u,—u' in L>(0, T ; H) weakly star and in L*(0, T ; W)
weakly,

2.16)  w/—u" in LX0, T ; H*) weakly,

2.17) u,(T)—u(T) in W weakly,
(2.18) w(T)—u'(T) in H weakly,

(2.19) A(u,)—y in L=(0, T'; V*) weakly star,
and
(2.20) Bu,—Bw in L*(0, T ; W*) weakly.

Since the injections of V into H and of W into H are compact, we
can furthermore assume that

(2.21) u,—U in L*(0, T'; H) strongly,
(2.22) u, (T)—u(T) in H strongly

and

(2.23) u,—u in L0, T ; H) strongly.

To show that the function u(t) is a solution of (1.1), (1.2), it is
sufficient to prove that
r=Aw).
Multiplying (2.4) by an arbitrary smooth function a(t), integrating
over [0, T'] and integrating the first term by parts, we have

—f(uin(t), a'(Qw )dt + I:(A(um(t)), a(t)w,)dt
(2.24) + j b, (), atyw )t
=I:(f ®), a(®wdt + (u;,(0), a(@)w,) — u,(T), a(T)w,).
Taking the limit of both sides with m=p, j fixed, we get
—f:(u’(t), o' (Hw J)dt-i—j:(x, a(t)wj)dt+j:b(u’(t), a(tyw,)dt

=j:(f ®), a®w)Hdt+ (u,, aO)w;)—@'(T), a(T)w;), ¥,
which implies
—["w®, vanat+ [ G vanat+ [ v, vanas

- j OT(f(t), W)t + (i, (0))— (W (T), (T

for any ¢ ¢ G, where G denotes a family of functions defined by
G={¥|veLX0,T; V), ¥ e L¥0, T ; H)}.
In particular, setting +»=wu, we have

T T 1 1
[T at+ [ oy wrdt+ Lo, ) — Lot

(2.25)

(2.26) .
:jo (s wdt + (s, 1) — (T, w(T)).
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The monotonicity of A gives
2.27) X”=jT(A(uP)—A(v), u,—0)dt=0,  Yve L (0-T; V).
From (2.4) \ile have
[, wat= 1w dt— Lo, @,

+ —;-b(uF«», ,(0) + j (f, u,)dt

+ (u,(0), u(0)) — (w,(T), u,(T))
from which it follows that

X,= [l de— %b(uﬂ(T), u,(T)) + %b(uﬂ(ox 2,(0))

+ j:(f » w)dt + (w,(0), %,(0)) — (ui(T), u,(T))

_ f "Aw), ul,—v)dt—JT(A(u,,), v)dt.
0 0
Hence, in virtue of (1.5) and (2.17) we get

tim inf X, <[ o Iy dt— L0@uT), w(T)+ b, u)
© 0

(2.28) +LT(f, W)t 4, u) — @/(T), u(T))

T T
— j (AW), u—v)dt—j (o, v)dt.
0 0
Combining (2.26) with (2.28), we have
'[T(X—A(v), u—)dt 0.
0

Then, a well-known argument of the theory of monotone operators gives
From (1.1), we have
W' =—Au)—Buw + f e L0, T; V*).
This completes the proof of Theorem 1.
3. Some Examples. Let 2 be a bounded domain in R* with a
sufficient smooth boundary 02. Points in 2 are denoted by x=(x,, - - -,

x,) and the time variable is denoted by t. We consider the following
initial boundary value problem

u & 0 [ 0w\ ou _
@1 ot _igl o, (axi) 4 ot =/
3.2) u(z, 0) =u,(), ou(zx, 0) /0t =u,(),
(3.3) w(x, t)=0 on 02 x [0, T1,

where f(x,t), u,(x) and u,(x) are given functions and T is an arbitrary
positive number.
Put
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3.4) AG)=—3 (g;‘)“"‘
i=1 1
and
z ou ov
3.
(3.5) b(u, v)= Z oaxi oz, dx.

If we take H=L*Q), W=W3*(Q) and V=W3?(2), we easily see
that our hypotheses on A and B are satisfied. Furthermore the well-
known theorem of Sobolev tells us that if

n n
then
H=wxQ)c Wi(Q)
and the injection of W3*(Q) into Wi??(2) is continuous. Hence, we
have

Theorem 2. For each f e L*0,T ; LXR)), u,€¢ W (Q), u, € L),
the initial boundary value problem (8.1)—(8.3) has a solution wu(x,t)
€ L=(0, T ; WH*P(Q)) with

ou(x, t)/ot e L=(0, T ; L*(2)) N L¥0, T ; W 2))
and
o*u(x, t)/ 0t e L0, T ; W~L22p-1(Q)),
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