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(Comm. by K. KUNUGI, M.J.A., Feb. 12, 1954)

By a quasi-translation will be meant a sense preserving topo-
logical transformation f of a Euclidean space E" onto itself such that
for every bounded set M its iterated images f(M) for
have no cluster set, i.e.

lim_+oof (M)--O,
or roughly speaking, f(M) diverges to infinity when n-* +_ o.

A quasi-translation is a fortiori fixed point free and moreover
regular (or singularity free) in the sense of Kerkjrt6-Sperner.
Thus a quasi-translation is by the theorem of Kerekjarto-Sperner)
topologically equivalent to a translation in the ordinary sense if
E is a plane. Whether or not this is true for n3 remains still
open. The purpose of this note is to give a simple proof of Theorem
I, which may serve as a lemma to settle this question. The theorem
of KerkjrtS-Sperner is an immediate consequence of our theorem.

Theorem I. Let f be a quasi-translation of E. Then there is
an unbounded polyhedron r such that if D denotes the domain bounded
by r and f(r), then f(D) is disjoint from fro(D) whenever nm, n
and m being arbitrary integers, and ._f (

We prove the theorem in the following version, in which the
sense preservation is not even assumed.

Theorem II. Let f be a topological transformation of a sphere
S onto itself with a single fixed point o such that if M is a set with
M o, then

lim,f’(M)-o.
Then there exists an open polyhedron with the sole boundary at o such
that if D denotes the domain bounded by o* and f(o), then
f’(D) is disjoint from f(D) whenever nm, n and m being arbitrary

D -S.integers, and f ( )

Proof. To begin with, we shall define for any set M of S" the
measure (M) introduced by H. Whitney) as follows" Let a, a,
..., a,.., be a sequence of points dense in S, and put for any

o denotes the point o as well as the set consisting of the point o. o means
the set sum of and o.
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point x of S

Given a set M, let

and let

f,,(z)
1 + d(x,

(M) sup f,(x)- inf f,(x)

/.(M)(M)=.- 2

Then /(M) is defined for every set M of S" and we have
W. 0 _< tt(M) d(M).* *)

W. If MN, then (M) (N).
W. If M U(N; s), ** then (M)<(N) + e.
W,. If MN and if N contains at least one point which has

a positive distance from M, then (M)<(N) (Whitney)).
In the following we shall make free use of these properties

W-W of Whitney’s -measure.
For every point x of S" consider the set

where if(x) and f(x) stand for x and f(x) respectively, and cor-
respondingly the function

=g+(x).
Then g+(x) is continuous at every point x except at x=o. For,
given a positive number , there can be found a neighbourhood U
of x such that d(f"(U))< for all n 0 by the continuity of f and
by the hypothesis of regularity that

lim. f’(U) o

whenever U o. Then for every point y U
f’(y) U( 2of’(x); e)

and

hold and hence by W

whence the continuity of g+(x) at x#o follows.
Next put

g_(z) ,( U:5
Then g_(x) is likewise continuous at x except at x-o and so is the
function

**) d(a, b), d(M) and U(M; e) are the distance between a and b, the diameter
of M and the e-neighbourhood of M respectively on Sn.
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(x)=g+(x)--g_(x).
Now take a point p fixed and different from o. Then, if n>0

is taken sufficiently large, g+(f"(p)) can be made as small as we
please, while

>, U,:L f(p))=g-(p) >0,
so that (f’(p))=g+(f’(p))-g_(f’(p)) becomes negative. By the
same reason (f(p)) becomes positive if n< 0 is chosen large enough
in absolute value. It follows from the continuity of f that there
must also be points x with (x)-0 other than o. If we put there-
fore

o = [xl 0},

+=
_-

then , + an
_

are all non void.
Since e()=0 for o implies (]())40 by the definition of

(x) and on account of W, we have

Moreover we have
f(_)c_.

Now let U be a domain such that U $ o and Uf(U) O. Then
or every n

and since U$ o, there is a positive number d such that for eve
yU

ut given a positive number e there is by the hypothesis on f a
ositive number such

tot all . Therefore, if is chosen <d, then or any x f(U)
and for any n N we have, since f-" ()

<-d
<0,

which indicates that all ](U) are contained
denote by D_ the component of

_
which contains [(U), then

f(U) is wholly contained in D_ whenever nN, in consequence
the relation (1).
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Since the boundary of

_
is evidently contained in , every

boundary point of D_ is also a point of
f(D_) is wholly contained in D_. For first, since D_ and f(D_)

have the set f"+(U) in common, they intersect. Second, if there
were a point x of f(D_) outside D_, connect x and a point q of
f+(U) by an arc within f(D_). Then it must intersect the boundary
/_ of D_ and thus there would exist a point r of/_ in f(D_), which

is absurd, since e 2-Co but/(D_),q)o=0.
Now let {U,} be a covering of S"-o consisting of a countable

number of domains U, such that U, $ 0 and U,f(U,)O, and cor-
responding to each U, let D, be the component of

_
described

above, that is the component of

_
with the property that f"(U,)

are all contained in D, if nN, for some natural number N,. We
assert that in reality D, all coincide.

To prove his, suppose the contrary were the truth, and chang-
ing suitably the suffixes of D, if necessary, let D, D,..., D,,...
(2___<i< o) be the finite or infinite sequence of all distinct D,. Then,
if p is any point of S"-o, there is an element of {U,}, say U,
which contains p, but, since D, contains by its definition f,(U,),
o is contained in f-,(D.). Consequently we have

( 2 ) U-- U-f(D)=S-o.
On the other hand, since D are disjoint, we have

f(D)f(D)=O
for every n whenever i j. But since DDf(D), we have

f(n)f(D)=O
for any integers n and m. Thus by (2) S’-o is seen to be expressed
as the sum of at least two, and at most a countably infinite number
of, disjoint domains

UZ_ f(n,),
which is absurd. Therefore all D must coincide, and each D is
nothing other than D_ we have considered above.

Thus we have obtained the following result:
Under the hypothesis on f of Theorem H there exists a domain

D_CcP_ such that

(3) D_f(D_), 9_f(D_)-O and (J=_oof(D_)=S-o.
By covering D_ in the usual way with a family of cubes which

intersect D_ but which are disjoint from f (D_), we can obtain
from D_ a domain P bounded by one or more of open polyhedra
with the sole boundary at o such that

D_P f-(D_).



84 H. TERASAKA [Vol. 30,

Proceeding exactly as above we can obtain analogous to D_ a
component D+ of + such that (3), D_ substituted by D+, holds
true. Now, if the boundary of P consists of more than one com-
ponent, let r be that component which can be joined by an arc
j to a point of D+ outside P. Then r is obviously the required
polyhedron.
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