33. Probabilities on Inheritance in Consanguineous
 Families. V

By Yûsaku Komatu and Han Nishimiya
Department of Mathematics, Tokyo Institute of Technology (Comm. by T. Furuhata, m.J.a., Feb. 12, 1954)
V. Mother-descendant combinations through a single consanguineous marriage

1. Mother-descendant combination immediate after a consanguineous marriage

Up to the last chapter, any consanguineous marriage has never been implicated. We now begin to attack the problems concerning a consanguineous marriage.

Let μ th and ν th descendants collaterally originated from a mother $A_{\alpha \beta}$ and her same spouse be married consanguineously and then originate themselves an nth descendant $A_{\xi n}$. Our present purpose is to determine the probability of combination $\left(A_{\alpha \beta} ; A_{\xi_{\eta}}\right)$ which will be designated by

$$
\pi_{\mu \nu ; n}\left(\alpha \beta ; \xi_{\eta}\right) \equiv \bar{A}_{\xi \eta} \kappa_{\mu \nu ; n}(\alpha \beta ; \xi \eta) .
$$

We distinguish three systems according to $\mu=\nu=1, \mu>1=\nu$ or $\mu=1<\nu$, and $\mu, \nu>1$. However, the final results for $\pi_{\mu \nu ; n}$ will be, contrary to $\pi_{\mu \nu}$ discussed in III, unified into a unique expression for any pair of μ, ν with $\mu \geqq 1, \nu \geqq 1$.

We first deal with the case $n=1$. Its defining equation given by

$$
\kappa_{\mu \nu ; 1}(\alpha \beta ; \xi \eta)=\sum \kappa_{\mu \nu}(\alpha \beta ; a b, c d) \varepsilon\left(a b, c d ; \xi_{\eta}\right)
$$

leads to an expression

$$
\kappa_{\mu \nu ; 1}\left(\alpha \beta ; \xi_{\eta}\right)=\bar{A}_{\xi_{\eta}}+L_{\mu \nu} Q\left(\alpha \beta ; \xi_{\eta}\right)+2^{-\lambda} T\left(\alpha \beta ; \xi_{\eta}\right),
$$

where we put

$$
L_{\mu \nu}=2^{-\mu}+2^{-\nu}, \quad \lambda=\mu+\nu-1 .
$$

The values of the quantity defined by

$$
T(\alpha \beta ; \xi \eta)=2\left\{\kappa_{11 ; 1}(\alpha \beta ; \xi \eta)-\kappa\left(\alpha \beta ; \xi_{\eta}\right)\right\}
$$

are set out in the following lines:

$$
\begin{array}{ll}
T(i i ; i i)=\frac{1}{4}(1-i)(2-i), & T(i i ; i k)=-\frac{1}{2} k(2-i), \\
T(i i ; k k)=\frac{1}{4} k(1+k), & T(i i ; h k)=\frac{1}{2} h k ; \\
T(i j ; i i)=\frac{1}{8}\left(1-2 i+2 i^{2}\right), & T(i j ; i j)=\frac{1}{4}(1-2 i-2 j+2 i j), \\
T(i j ; i k)=-\frac{1}{2} k(1-i), & T(i j ; k k)=\frac{1}{4} k(1+k), \\
T(i j ; h k)=\frac{1}{2} h k . &
\end{array}
$$

It can be shown that there hold the relations

$$
\begin{aligned}
& \sum W(\alpha \beta ; a b, c d) \varepsilon(a b, c d ; \xi \eta)=Q(\alpha \beta ; \xi \eta)+T(\alpha \beta ; \xi \eta), \\
& \sum T(\alpha \beta ; a b, c d) \varepsilon(a b, c d ; \xi \eta)=T(\alpha \beta ; \xi \eta), \quad \sum T(\alpha \beta ; a b)=0, \\
& \sum \bar{A}_{a b} Q(\alpha \beta ; c d) \varepsilon(a b, c d ; \xi \eta)=\frac{1}{2} Q(\alpha \beta ; \xi \eta) .
\end{aligned}
$$

2. Mother-descendant combination distant after a consanguine-

 ous marriageThe reduced probability in generic case with $n>1$ is defined by an equation

$$
\kappa_{\mu \nu ; n}\left(\alpha \beta ; \xi_{\eta}\right)=\sum \kappa_{\mu \nu ; 1}(\alpha \beta ; a b) \kappa_{n-1}\left(\alpha b ; \xi_{\eta}\right),
$$

which is brought into the form

$$
\kappa_{\mu \nu ; n}\left(\alpha \beta, \xi_{\eta}\right)=\bar{A}_{\xi \eta}+2^{-n+1} L_{\mu \nu} Q\left(\alpha \beta ; \xi_{\eta}\right) .
$$

In fact, it is proved that there holds identically

$$
\sum T(\alpha \beta ; a b) Q(a b ; \xi \eta)=0 .
$$

Asymptotic behaviors of $\kappa_{\mu \nu ; n}$ as μ, ν, or n tends to ∞ will be obvious. In fact, we obtain readily the limit equations

$$
\lim _{\mu \rightarrow \infty} \kappa_{\mu \nu ; n}\left(\alpha \beta ; \xi_{\eta}\right)=\kappa_{\nu+n}\left(\alpha \beta ; \xi_{\eta}\right), \quad \lim _{\nu \rightarrow \infty} \kappa_{\mu \nu ; n}\left(\alpha \beta ; \xi_{\eta}\right)=\kappa_{\mu+n}\left(\alpha \beta ; \xi_{\eta}\right),
$$

and

$$
\lim _{n \rightarrow \infty} \kappa_{\mu \nu ; n}(\alpha \beta ; \xi \eta)=\bar{A}_{\xi \eta},
$$

among which first two remain valid also for $n=1$.
3. General mother-descendant combination through a single consanguineous marriage

In the present section we consider a general mother-descendant combination in which there concerns an intermediate collateral separation as well as a subsequent consanguineous marriage. Let namely an individual $A_{\alpha \beta}$ originate an l th descendant where a collateral separation takes place, and let the (μ, ν) th descendants of the latter be then married consanguineously and produce an nth descendant $A_{\S \eta}$. Let the probability of combination $\left(A_{\alpha \beta} ; A_{\xi \eta}\right)$ be then designated by

$$
\pi_{l \mid \mu \nu ; n}\left(\alpha \beta ; \xi_{\eta}\right) \equiv \bar{A}_{\alpha \beta} \varepsilon_{l \mid \mu \nu ; n}\left(\alpha \beta ; \xi_{\eta}\right) .
$$

It is defined by an equation

$$
\kappa_{l \mid \mu \nu ; n}\left(\alpha \beta ; \xi_{\eta}\right)=\sum \kappa_{l}(\alpha \beta ; a b) \kappa_{\mu \nu ; n}\left(\alpha b ; \xi_{\eta}\right) .
$$

The formula for the lowest case $n=1$ is exceptional and is expressed in the form

$$
\kappa_{l \mid \mu \nu ; 1}\left(\alpha \beta ; \xi_{\eta}\right)=\bar{A}_{\xi_{\eta}}+2^{-l} L_{\mu \nu} Q\left(\alpha \beta ; \xi_{\eta}\right)+2^{-\lambda} R\left(\xi_{\eta}\right)+2^{-l-\lambda} S\left(\alpha \beta ; \xi_{\eta}\right),
$$

where we put, besides $\lambda=\mu+\nu-1$,

$$
R\left(\xi_{\eta}\right)=\sum \bar{A}_{a b} T(a b ; \xi \eta), \quad S\left(\alpha \beta ; \xi_{\eta}\right)=2 \sum Q(\alpha \beta ; a b) T\left(a b ; \xi_{\eta}\right) .
$$

The values of these quantities are set out as follows:

$$
\begin{aligned}
R(i i) & =\frac{1}{2} i(1-i), & R(i j) & =-i j ; \\
S(i i ; i i) & =4(1-i)(1-2 i), & S(i i ; ; i k) & =-\frac{1}{2} k(1-2 i), \\
S(i i ; k k) & =-\frac{1}{4} k(1-2 k), & S(i i ; h k) & =h k, \\
S(i j ; i i) & =\frac{1}{8}(1-2 i)^{2}, & S(i j ; i j) & =-\frac{1}{4}(i+j-4 i j), \\
S(i j ; i k) & =-\frac{1}{4} k(1-4 k) . & S(i j ; k k) & =-4 k(1-2 k), \\
S(i j ; h k) & =h k . & &
\end{aligned}
$$

It would be noted that there hold the relations

$$
\begin{gathered}
\sum S(\alpha \beta ; a b)=\sum \bar{A}_{a} S(a b ; \xi \eta)=0, \\
\sum \kappa(\alpha \beta ; a b) S(a b ; \xi \eta)=\sum Q(\alpha \beta ; a b) S(a b ; \xi \eta)=\frac{1}{2} S(\alpha \beta ; \xi \eta) .
\end{gathered}
$$

The formula for generic case with $n>1$ is simply given by

$$
\kappa_{\text {lluv;n }}\left(\alpha \beta ; \xi_{\eta}\right)=\bar{A}_{\xi_{\eta}}+2^{-t-n+1} L_{\mu \nu} Q\left(\alpha \beta ; \xi_{\eta}\right) .
$$

It is in passing noted that the following relations can be proved:

$$
\begin{aligned}
& \sum R(a b)=\sum R(a b) Q(a b ; \xi \eta)=\sum S(\alpha \beta ; a b) Q(a b ; \xi \eta)=0, \\
& \sum U(\alpha \beta ; a b, c d) \varepsilon(a b, c d ; \xi \eta)=\frac{1}{Q} Q(\alpha \beta ; \xi \eta)+1 S(\alpha \beta ; \xi \eta), \\
& \sum V(\alpha \beta ; a b, c d) \varepsilon(a b, c d ; \xi \eta)=Q(\alpha \beta ; \xi \eta)+\frac{1}{2} S(\alpha \beta ; \xi \eta), \\
& \sum S(\alpha \beta ; a b, c d) \varepsilon(a b, c d ; \xi \eta)=\frac{1}{2} S(\alpha \beta ; \xi \eta) .
\end{aligned}
$$

Asymptotic behaviors of $\kappa_{\text {zlu } 2 ; n}$ as one among the generationnumbers involved tends to ∞ will be obvious. In fact, we readily obtain the limit equations

$$
\begin{gathered}
\lim _{l \rightarrow \infty} \kappa_{l \mid \mu \nu ; n}(\alpha \beta ; \xi \eta)=\lim _{n \rightarrow \infty} \kappa_{l l \mu v \geqslant n}\left(\alpha \beta ; \xi_{\eta}\right)=\bar{A}_{\xi \eta}, \\
\lim _{\mu \rightarrow \infty} \kappa_{l l \mu \nu ; n}\left(\alpha \beta ; \xi_{\eta}\right)=\kappa_{l+\nu+n}\left(\alpha \beta ; \xi_{\eta}\right), \quad \lim _{\nu \rightarrow \infty} \kappa_{l \mid \mu \nu ; n}\left(\alpha \beta ; \xi_{\eta}\right)=\kappa_{l+\mu+n}\left(\alpha \beta ; \xi_{\eta}\right) .
\end{gathered}
$$

4. Contracting factor and equivalent generation-number

The present section is devoted to explain a meaning of the quantity

$$
L_{\mu \nu} \equiv 2^{-\mu}+2^{-\nu}
$$

introduced in § 1, from a view-point of genetics.
As shown in $\S 2$, the probability $\kappa_{\mu v ; i n}(n>1)$ of mother-descendant combination distant after a consanguineous marriage is expressed in the form

$$
\kappa_{\mu \nu ; \eta}(\alpha \beta ; \xi \eta)=\bar{A}_{\xi_{\eta}}+2^{-n+1} L_{p \nu} Q(\alpha \beta ; \xi \eta) .
$$

On the other hand, the probability $\kappa_{n} *$ of mother-descendant combination without any consanguineous marriage has been established, in I, §1 in the form

$$
\kappa_{n} *(\alpha \beta ; \xi \eta)=\bar{A}_{\xi \eta}+2^{-n^{*}+1} Q(\alpha \beta ; \xi \eta) .
$$

The comparison of these formulas will well interpret a meaning of the factor $L_{\mu \nu}$. In fact, we introduce a positive number ρ by an equation

$$
2^{-\rho}=L_{\mu \nu} \quad\left(\rho \equiv \rho_{\mu \nu}\right)
$$

which is solved in the explicit form

$$
\rho=-\log L_{\mu \nu} / \log 2=\mu+\nu-\log \left(2^{\mu}+2^{\nu}\right) / \log 2
$$

The probability $\kappa_{\mu \nu ; n}$ is then brought into the form

$$
\kappa_{\mu \nu ; \eta}\left(\alpha \beta ; \xi_{\eta}\right)=\bar{A}_{\xi_{\eta}}+2^{-(n+p)+1} Q\left(\alpha \beta ; \xi_{\eta}\right)
$$

which coincides formally with $\kappa_{n+\rho}(\alpha \beta ; \xi \eta)$, though the number ρ is, in general, i. e. unless $\mu=\nu$, not equal to an integer.

We can thus state the following proposition. A consanguineous marriage between collateral (μ, ν)th descendants produces such an effect on consanguineous intimacy between an original and a further $n(>1)$ th descendant originated from the consanguineous marriage that the part from the original individual to the (μ, ν) th descendants can be replaced by a lineal combination with a generation-number ρ defined as above which is equal to at most $\operatorname{Max}(\mu, \nu)-1$ and at least $\operatorname{Min}(\mu, \nu)-1$.

It should be noted that the proposition does not remain valid for an exceptional case $n=1$.

By reason of its own meaning explained just above, we call the number $\rho_{\mu \nu}$ an equivalent generation-number and the factor $L_{\mu \nu}$ a contracting factor.

In conclusion, it would be noticed that for practical purpose of computing the values of ρ 's and of L 's it suffices to obtain the values of these quantities with one generation-number equal to 1. In fact, besides an evident symmetry character with respect to generation-numbers, they satisfy the recurrence equations

$$
L_{\mu+1, \nu+1}=2^{-1} L_{\mu \nu} . \quad \text { and } \quad \rho_{\mu+1, \nu+1}=\rho_{\mu \nu}+1
$$

which yield the desired relations

$$
L_{\mu \nu}=2^{-(\nu-1)} L_{\mu-\nu+1,1} \quad \text { and } \quad \rho_{\mu \nu}=\rho_{\mu-\nu+1,1}+\nu-1
$$

provided $\mu \geqq \nu \geqq 1$.

