570 [Vol. 30, ## 121. On a Property of Mappings of Metric Spaces By Kiyoshi Iséki Kobe University (Comm. by K. Kunugi, M.J.A., July 12, 1954) In his paper, "Solid Spaces and Absolute Retracts" (Ark. Mat., 1, 375–382 (1952)), O. Hanner has proved that any metric NES (normal) is an absolute G_{δ} . In this note, we shall prove the following theorem: Any metric NES (completely normal) is an absolute G_{δ} . Let α be a class of topological spaces, and A a space of α . The space Y is called an NES (α) , if every mapping f of a closed subset A of a space X of α into Y can be extended to a mapping f' of an open set U into Y such that $A \subset U \subset X$. A space X is called an absolute G_{δ} , if whenever X is topologically imbedded in a metric space Y, then X is a G_{δ} in Y. To prove the theorem, we shall use the method employed by O. Hanner. Let X_1 be any metric space containing X, and Z one to one with X_1 . Let h be the (1-1)-correspondence from Z onto X_1 . We shall introduce a topology in Z by taking as open sets in Z $$h^{-1}(O) \cup A$$ where O is any open set of X_1 and A is any set of $Z-h^{-1}(X)$. Then h is continuous and $X'=h^{-1}(X)$ is closed in Z. The topological space Z is completely normal. Let A_1 , A_2 be separated sets in Z. Let $B_i = h(A_i \cap X')$ (i=1, 2), then B_1 , B_2 are separated in the metric space X_1 . Therefore, the two sets $O_1 = \{x \mid \rho(B_1, x) < \rho(B_2, x) \& x \in X_1\}$, $O_2 = \{x \mid \rho(B_1, x) > \rho(B_2, x) \& x \in X_2\}$ are disjoint open. Hence $U_1 = h^{-1}(O_1) \cup A_1$, $U_2 = h^{-1}(O_2) \cup A_2$ are disjoint open in Z, and $U_i \supset A_i$ (i=1, 2). Thus Z is completely normal. To prove that X is an absolute G_{δ} , we shall use an argument of C. H. Dowker.¹⁾ The partial mapping $h \mid X' \to X$ is extended to a mapping h' of an open set U, such that $X' \subset U \subset X$, into X, since X is an NES (completely normal). Let $$f(x) = \rho(h(x), h_1(x))$$ for $x \in U$, then f(x) is continuous, and f(x)=0 if and only if $x \in X'$. This shows that X' is a G_{δ} in U. There are open sets U_n in U such that $X' = \bigcap_{n=1}^{\infty} U_n$. Hence every U_n is open in Z, and $h(U_n) = V_n \bigcup A_n$ $(n=1, 2, \dots)$ where V_n is open in X_1 and $A_n \subset X_1 - X$. Thus $X = \bigcap_{n=1}^{\infty} V_n$ and $X_n \subset X_n = X_n$ is a G_{δ} in X_1 . This completes the proof. In a recent note, 2 the present author introduced a notion, absolute neighborhood retract for the class of completely normal spaces and proved that X is ANR (completely normal) if and only if it is NES (completely normal). Therefore, we have the following Theorem. Any metric ANR (completely normal) is an absolute G_s , and hence topologically complete. By my previous results³⁾ and similar method, we have the following Theorem. Any metric ANR (countably paracompact) is an absolute G_{δ} . The theorem for paracompact spaces was proved by O. Hanner ((4), p. 333, Theorem 14.1). Theorem. Any separable metric ANR (hypocompact) is an absolute G_{δ} . This is proved by a similar argument using a result of S. Kaplan ((5), p. 249). ## References - 1) C. H. Dowker: On a theorem of Hanner, Ark. Mat., 2, 307-313 (1952). - 2) K. Iséki: On the Hannerisation of completely normal spaces, to appear soon. - 3) K. Iséki: On Hannerisation of two, countably paracompact normal spaces, Proc. Japan Acad., **30**, 443-444 (1954). - 4) O. Hanner: Retraction and extension of mappings of metric and non-metric spaces, Ark. Mat., 2, 315-360 (1952). - 5) S. Kaplan: Homology theory of arbitrary subsets of Euclidean spaces, Trans. Am. Math. Soc., **62**, 248-271 (1947).