113. Note on Deformation Retract

By Kiyoshi Aoki
Mathematical Institute, Tôhoku University, Sendai
(Comm. by Z. Suetuna, m.J.A., July 12, 1954)

1. The main object of this note is to study a mapping which has a torus as the image space. The methods of the paper are strongly influenced by Spanier's proofs [5].
2. In this section we prepare some definitions and lemmas known in Spanier's paper on Borsuk's cohomotopy groups [5], [2].

Let \mathfrak{X} denote the space of a sequence of real numbers $y=\left(y_{i}\right)$ ($i=1,2, \ldots$) which are finitely non-zero (i.e. $y_{i}=0$ except for a finite set of integers i). \mathfrak{X} is metrized by

$$
\operatorname{dist}\left(y, y^{\prime}\right)=\left(\sum_{i}\left(y_{i}-y_{i}^{\prime}\right)^{2}\right)^{\frac{1}{2}}
$$

Definition 2.1. The sets below are defined by the corresponding condition on the right:

$$
\begin{aligned}
& S^{n}=\left\{y \in \mathfrak{X} \mid y_{i}=0 \text { for } i>n+1 \text { and } \sum_{\mid \leq i \leq n+1} y_{i}^{i}=1\right\} \text {, } \\
& E^{n+1}=\left\{y \in \mathfrak{X} \mid y_{i}=0 \text { for } i>n+1 \text { and } \sum_{\mid \leq i \leq n+1} y_{i}^{i} \leqq 1\right\} \text {, } \\
& E_{+}^{n}=\left\{y \in S^{n} \mid y_{n+1} \geqq 0\right\}, \\
& E_{-}^{n}=\left\{y \in S^{n} \mid y_{n+1} \leqq 0\right\} \text {, } \\
& E_{+}^{0}=p=(1,0, \ldots, 0, \ldots) \text {, } \\
& E_{-}^{0}=\bar{p}=(-1,0, \ldots, 0, \ldots) \text {, } \\
& T^{2 n}=S^{n} \times S^{n}, q=p \times p, \bar{q}=\bar{p} \times \bar{p} \quad \text { (for } \quad n \geqq 1 \text {). }
\end{aligned}
$$

Lemma 2.2. Let A be a deformation retract [4] of a compact space X and let $f:(X, A) \rightarrow(Y, B)$ be a map of (X, A) onto (Y, B), which maps $X-A$ homeomorphically onto $Y-B$. Then B is a deformation retract of Y.

Lemma 2.3. Let (X, A) be a compact pair with $\operatorname{dim}(X-A) \leqq n$. If F is any closed subset of $X \times I-A \times I, \operatorname{dim} F \leqq n+1$.

Definition 2.4. Let $f:(X, A) \rightarrow(Y \times Y,(y, y))$. A map

$$
F: \quad(X \times I, A \times I) \rightarrow(Y \times Y,(y, y))
$$

will be called a normalizing homotopy for f, if

$$
\left.\begin{array}{l}
F(x, 0)=f(x) \\
F(x, 1) \in(Y \times y) \cup(y \times Y)
\end{array}\right\} \quad \text { for all } \quad x \in X
$$

The $\operatorname{map} f^{\prime}:(X, A) \rightarrow[(Y \times y) \cup(y \times Y),(y, y)]$ defined by $f^{\prime}(x)=F(x, 1)$ is called a normalization of f.

In the following $Y \vee Y$ will denote the space $(Y \times y) \cup(y \times Y)$. Let

$$
\Omega: \quad[Y \vee Y,(y, y)] \rightarrow(Y, y)
$$

be defined by

$$
\begin{array}{lll}
\left(y^{\prime}, y\right)=y^{\prime} & \text { for } & \left(y^{\prime}, y\right) \in Y \times y \\
\left(y, y^{\prime \prime}\right)=y^{\prime \prime} & \text { for } & \left(y, y^{\prime \prime}\right) \in y \times Y .
\end{array}
$$

Definition 2.5. Let $\alpha, \beta:(X, A) \rightarrow(Y, B)$ and assume that $\alpha \times \beta$: $(X, A) \rightarrow(Y \times Y,(y, y))$ can be normalized. Let $f:(X, A) \rightarrow(Y \vee Y$, (y, y)) be a normalization of $\alpha \times \beta$. The sum with respect to $f($ denoted by $\alpha<f>\beta$) is defined to be the composite map $\alpha<f>\beta=\Omega f$.

Lemma 2.6. Let (X, A) be a pair with $\operatorname{dim} F<2 n$ any closed $F \subset X-A$. If $f:(X, A) \rightarrow\left(S^{n} \times S^{n},(p, p)\right)$, there exists a normalization g of f such that $f \simeq g$ rel $f^{-1}\left(S^{n} \vee S^{n}\right)$.

Lemma 2.7. Let (X, A) be a compact pair with $\operatorname{dim}(X-A)$ $<2 n-1$. If $\alpha, \beta, \alpha^{\prime}, \beta^{\prime}:(X, A) \rightarrow\left(S^{n}, p\right)$ with $\alpha \simeq \alpha^{\prime}$ and $\beta \simeq \beta^{\prime}$ and if $g:(X, A) \rightarrow\left(S^{n} \vee S^{n},(p, p)\right)$ is a normalization of $\alpha \times \beta$ and $g^{\prime}:(X, A)$ $\rightarrow\left(S^{n} \vee S^{n},(p, p)\right)$ is a normalization of $\alpha^{\prime} \times \beta^{\prime}$, then $\Omega g \simeq \Omega g^{\prime}$.
3. Our theorems are the following:

Theorem 3.1. In the product space $T^{2 n} \times T^{2 n}$, the subset ($T^{2 n}$ $\times q) \cup\left(q \times T^{2 n}\right)$ is a deformation retract of $T^{2 n} \times T^{2 n}-\left[(\bar{q}, \bar{q}) \cup T^{2 n} \times \bar{p}\right.$ $\left.\times p \cup T^{2 n} \times p \times \bar{p} \bigcup \bar{p} \times p \times T^{2 n} \cup p \times \bar{p} \times T^{2 n}\right]$.

Proof. This is analogous to Borsuk's proof [1]. Let $f:\left(E^{n}\right.$, $\left.S^{n-1}\right) \rightarrow\left(S^{n}, p\right) \operatorname{map} E^{n}-S^{n-1}$ homeomorphically onto $S^{n}-p$. Let $f^{-1}(\bar{p})$ $=\bar{x}$ be the center of E^{n}. Define

$$
\begin{aligned}
& g: {\left[E^{2 n} \times E^{2 n}-(\bar{x}, \bar{x}, \bar{x}, \bar{x}) \cup E^{2 n} \times\left(E^{n}\right)^{i} \times S^{n-1} \cup E^{2 n} \times S^{n-1}\right.} \\
& \times\left(E^{n}\right)^{i} \cup\left(E^{n}\right)^{i} \times S^{n-1} \times E^{2 n} \cup S^{n-1} \times\left(E^{n}\right)^{i} \times E^{2 n}, \\
&\left.E^{2 n} \times T^{2 n-2} \cup T^{2 n-2} \times E^{2 n}\right] \\
& \rightarrow\left[T^{2 n} \times T^{2 n}-(\bar{q}, \bar{q}) \cup T^{2 n} \times f\left(\left(E^{n}\right)^{i}\right) \times p \cup T^{2 n} \times p \times f\left(\left(E^{n}\right)^{i}\right)\right. \\
& \cup f\left(\left(E^{n}\right)^{i}\right) \times p \times T^{2 n} \cup p \times f\left(\left(E^{n}\right)^{i}\right) \times T^{2 n}, \\
&\left.T^{2 n} \times q \cup q \times T^{2 n}\right]
\end{aligned}
$$

by
$g\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(f\left(x_{1}\right), f\left(x_{2}\right), f\left(x_{3}\right), f\left(x_{4}\right)\right)$, where $\left(E^{n}\right)^{i}$ is the interior of a set E^{n}. Then g is a map onto $T^{2 n} \times T^{2 n}-(\bar{p}, \bar{p}, \bar{p}, \bar{p}) \cup T^{2 n} \times f\left(\left(E^{n}\right)^{i}\right)$ $\times p^{\prime} \cup T^{2 n} \times p \times f\left(\left(E^{n}\right)^{i}\right) \cup f\left(\left(E^{n}\right)^{i}\right) \times p \times T^{2 n} \cup p \times f\left(\left(E^{n}\right)^{i}\right) \times T^{2 n}$ which maps $E^{2 n} \times E^{2 n}-(\bar{x}, \bar{x}, \bar{x}, \bar{x}) \cup E^{2 n} \times\left(E^{n}\right)^{i} \times S^{n-1} \cup E^{2 n} \times S^{n-1} \times\left(E^{n}\right)^{i} \cup\left(E^{n}\right)^{i} \times S^{n-1}$ $\times E^{2 n} \cup S^{n-1} \times\left(E^{n}\right)^{i} \times E^{2 n}-\left[E^{2 n} \times T^{2 n-2} \cup T^{2 n-2} \times E^{2 n}\right]$ homeomorphically onto

$$
\begin{aligned}
& T^{2 n} \times T^{2 n}-(\bar{p}, \bar{p}, \bar{p}, \bar{p}) \cup T^{2 n} \times f\left(\left(E^{n}\right)^{i}\right) \times p \cup T^{2 n} \times p \times f\left(\left(E^{n}\right)^{i}\right) \\
& \quad \cup f\left(\left(E^{n}\right)^{i}\right) \times p \times T^{2 n} \cup p \times f\left(\left(E^{n}\right)^{i}\right) \times T^{2 n}-\left[T^{2 n} \times q \bigcup q \times T^{2 n}\right] .
\end{aligned}
$$

Since $E^{2 n} \times E^{2 n}$ is a $4 n$-cell with center $(\bar{x}, \bar{x}, \bar{x}, \bar{x})$ and the intersection of $\left(E^{2 n} \times E^{2 n}\right)$ and $E^{2 n} \times E^{2 n}-\left[E^{2 n} \times\left(E^{n}\right)^{i} \times S^{n-1} \cup E^{2 n} \times S^{n-1} \times\left(E^{n}\right)^{i}\right.$ $\left.\bigcup\left(E^{n}\right)^{i} \times S^{n-1} \times E^{2 n} \cup S^{n-1} \times\left(E^{n}\right)^{i} \times E^{2 n}\right]$ is $E^{2 n} \times T^{2 n-2} \cup T^{2 n-2} \times E^{2 n}$, it is clear that $E^{2 n} \times T^{2 n-2} \cup T^{2 n-2} \times E^{2 n}$ is a deformation retract of $E^{2 n}$ $\times E^{2 n}-\left[(\bar{x}, \bar{x}, \bar{x}, \bar{x}) \cup E^{2 n} \times\left(E^{n}\right)^{i} \times S^{n-1} \cup E^{2 n} \times S^{n-1} \times\left(E^{n}\right)^{i} \cup\left(E^{n}\right)^{i} \times S^{n-1}\right.$ $\times E^{2 n} \cup S^{n-1} \times\left(E^{n}\right)^{i} \times E^{2 n}$. Therefore, by Lemma 2.2, $T^{2 n} \times q \cup q \times T^{2 n}$ is a deformation retract of $T^{2 n} \times T^{2 n}-\left[(\bar{q}, \bar{q}) \cup T^{2 n} \times f\left(\left(E^{n}\right)^{i}\right) \times p \cup T^{2 n}\right.$ $\times p \times f\left(\left(E^{n}\right)^{i}\right) \cup f\left(\left(E^{n}\right)^{i}\right) \times p \times T^{2 n} \cup p \times f\left(\left(E^{n}\right)^{i}\right) \times T^{2 n} . \quad T^{2 n} \times T^{2 n}-T^{2 n} \times \bar{p}$
$\times p$ may be deformed onto $T^{2 n} \times T^{2 n}-T^{2 n} \times f\left(\left(E^{n}\right)^{i}\right) \times p$ and the similar deformations may be used for the another parts of the above set. Therefore, $T^{2 n} \times q \cup q \times T^{2 n}$ is a deformation retract of $T^{2 n} \times T^{2 n}$ $-\left\lceil(\bar{q}, \bar{q}) \cup T^{2 n} \times \bar{p} \times p \cup T^{2 n} \times p \times \bar{p} \cup \bar{p} \times p \times T^{2 n} \cup p \times \bar{p} \times T^{2 n}\right]$.

Theorem 3.2. In the product space $T^{2 n} \times T^{2 n} \times T^{2 n}$, the subset $\left(T^{2 n} \times T^{2 n} \times q\right) \cup\left(T^{2 n} \times q \times T^{2 n}\right) \cup\left(q \times T^{2 n} \times T^{2 n}\right)$ is a deformation retract of $\quad T^{2 n} \times T^{2 n} \times T^{2 n}-\left[(\bar{q}, \bar{q}, \bar{q}) \cup T^{2 n} \times T^{2 n} \times \bar{p} \times p \cup T^{2 n} \times T^{2 n} \times p \times \bar{p} \cup T^{2 n}\right.$ $\times \bar{p} \times p \times T^{2 n} \cup T^{2 n} \times p \times \bar{p} \times T^{2 n} \cup \bar{p} \times p \times T^{2 n} \times T^{2 n} \cup p \times \bar{p} \times T^{2 n} \times T^{2 n}$.
Since the proof is similar to that of Theorem 3.1, it will be omitted.
Lemma 3.3. Let (E, A) be a pair with $\operatorname{dim} F \leqq 4 n-1$ for any closed $F \subset X-A$. Given a continuous map $f:(X, A) \rightarrow(Y, B)$ into a pair (Y, B) and given an open $2 n$-simplex σ, where $T^{2 n} \times \sigma \cup \sigma \times T^{2 n}$ lies on Y and its closure $T^{2 n} \times \bar{\sigma} \cup \bar{\sigma} \times T^{2 n}$ does not meet B, there is a map $g:(X, A) \rightarrow(Y, B)$ such that $f \simeq g$ rel $f^{-1}\left(Y-T^{2 n} \times \sigma \cup \sigma \times T^{2 n}\right)$ and $g(X) \subset Y-T^{2 n} \times \sigma \cup \sigma \times T^{2 n}$.

Proof. Let $\sigma=\bar{\sigma}-\sigma$ be the point set boundary of σ.
Let $M=f^{-1}\left(T^{2 n} \times \bar{\sigma} \cup \bar{\sigma} \times T^{2 n}\right)$ and $N=f^{-1}\left(T^{2 n} \times \dot{\sigma} \cup \dot{\sigma} \times T^{2 n}\right)$. Then N is a closed subset of M, and $\operatorname{dim} M \leqq 4 n-1$. The map $f \mid N$, which maps N into $T^{2 n} \times \sigma \cup \dot{\sigma} \times T^{2 n}$, as an extension $f^{\prime}: M \rightarrow T^{2 n} \times \dot{\sigma} \cup \dot{\sigma}$ $\times T^{2 n}$, because we consider the first coordinate for $f(N) \cap\left[\dot{\sigma} \times T^{2 n}\right]$ and the second coordinate for $f(M) \cap\left[T^{2 n} \times \dot{\sigma}\right]$ and use the methods shown by Dowker [3]. Define

$$
g:(X, A) \rightarrow(Y, B)
$$

by

$$
g(x)=\left\{\begin{array}{lll}
f^{\prime}(x) & \text { if } & x \in M \\
f(x) & \text { if } & x \in X-M
\end{array}\right.
$$

Then g is continuous and $g(X) \subset Y-T^{2 n} \times \sigma \cup \sigma \times T^{2 n}$. Moreover, f^{\prime} and $f \mid M$ are two maps of (M, N) into ($T^{2 n} \times \bar{\sigma} \cup \bar{\sigma} \times T^{2 n}, T^{2 n} \times \dot{\boldsymbol{\sigma}} \cup \dot{\boldsymbol{\sigma}}$ $\times T^{2 n}$) which agree on N and hence are homotopic relative to N. Let

$$
F:(M \times I, N \times I) \rightarrow\left(T^{2 n} \times \bar{\sigma} \cup \bar{\sigma} \times T^{2 n}, T^{2 n} \times \dot{\sigma} \cup \dot{\sigma} \times T^{2 n}\right)
$$

be a homotopy between f^{\prime} and $f \mid M$ relative to N. Define

$$
G:(X \times I, A \times I) \rightarrow(Y, B)
$$

by

$$
G(x, t)=\left\{\begin{array}{lll}
F(x, t) & \text { if } & x \in M \\
f(x) & \text { if } & x \in X-M
\end{array}\right.
$$

Then G is a homotopy rel $f^{-1}\left(Y-T^{2 n} \times \sigma \cup \sigma \times T^{2 n}\right)$ between f and g.
Lemma 3.4. Let (X, A) be a pair with $\operatorname{dim} F \leqq 6 n-1$ for any closed $F \subset X-A$. Given a continuous map $f:(X, A) \rightarrow(Y, B)$ into a pair (Y, B) and given an open $2 n$-simplex σ, where $T^{2 n} \times T^{2 n} \times \sigma \cup T^{2 n}$ $\times \sigma \times T^{2 n} \cup \sigma \times T^{2 n} \times T^{2 n}$ lies on Y and its closure $T^{2 n} \times T^{2 n} \times \bar{\sigma} \cup T^{2 n}$ $\times \bar{\sigma} \times T^{2 n} \cup \bar{\sigma} \times T^{2 n} \times T^{2 n}$ does not meet B, there is a map $g:(X, A) \rightarrow$
(Y, B) such that $f \simeq g$ rel $f^{-1}\left(Y-T^{2 n} \times T^{2 n} \times \sigma \cup T^{2 n} \times \sigma \times T^{2 n} \cup \sigma \times T^{2 n}\right.$ $\left.\times T^{2 n}\right)$ and $g(X) \subset Y-T^{2 n} \times T^{2 n} \times \sigma \cup T^{2 n} \times \sigma \times T^{2 n} \cup \sigma \times T^{2 n} \times T^{2 n}$
Since the proof is similar to that of Lemma 3.3, it will be omitted.
Theorem 3.5. Let (X, A) be a pair with $\operatorname{dim} F<4 n$ for any closed $F \subset X-A$. If $f:(X, A) \rightarrow\left(T^{2 n} \times T^{2 n}, q \times q\right)$, there exists a normalization g of f such that $f \simeq g$ rel $f^{-1}\left(T^{2 n} \vee T^{2 n}\right)$.

Proof. Consider ($T^{2 n} \times T^{2 n},(q, q)$) as a simplicial pair subdivided in such a way that (q, q) is a vertex and $(\bar{q}, \bar{q}) \cup T^{2 n} \times \bar{p} \times p \cup T^{2 n} \times p$ $\times \bar{p} \cup \bar{p} \times p \times T^{2 n} \cup p \times \bar{p} \times T^{2 n}$ is interior to $T^{2 n} \times \sigma \cup \sigma \times T^{2 n}$ whose closure $T^{2 n} \times \bar{\sigma} \cup \bar{\sigma} \times T^{2 n}$ does not meet $T^{2 n} \vee T^{2 n}$. By Lemma 3.3, there is a map $h:(X, A) \rightarrow\left(T^{2 n} \times T^{2 n} ;(q, q)\right)$ such that $h(X) \subset T^{2 n} \times T^{2 n}-T^{2 n}$ $\times \sigma \cup \sigma \times T^{2 n} \subset T^{2 n} \times T^{2 n}-\left[(\bar{q}, \bar{q}) \cup T^{2 n} \times \bar{p} \times p \cup T^{2 n} \times p \times \bar{p} \cup \bar{p} \times p \times T^{2 n}\right.$ $\cup p \times \bar{p} \times T^{2 n}$ and $f \simeq h$ rel $f^{-1}\left(T^{2 n} \times T^{2 n}-T^{2 n} \times \sigma \cup \sigma \times T^{2 n}\right)$. By Theorem 3.1, $T^{2 n} \vee T^{2 n}$ is a deformation retract of $T^{2 n} \times T^{2 n}-\left[(\bar{q}, \bar{q}) \cup T^{2 n}\right.$ $\times \bar{p} \times p \cup T^{2 n} \times p \times \bar{p} \cup \bar{p} \times p \times T^{2 n} \cup p \times \bar{p} \times T^{2 n}$, so there is a retracting deformation F of it onto $T^{2 n} \vee T^{2 n}$. Then $F h$ is a normalizing homotopy for h and if g is the resulting normalization of $h, g \simeq h$ rel $h^{-1}\left(T^{2 n} \vee T^{2 n}\right)=f^{-1}\left(T^{2 n} \vee T^{2 n}\right)$. Therefore, $g \simeq f$ rel $f^{-1}\left(T^{2 n} \vee T^{2 n}\right)$.

References

[1] K. Borsuk: Sur l'addition homologique des types de transformations continuons en surfaces sphériques. Ann. Math., 38, 733-738 (1937).
[2] K. Borsuk: Sur les groupes des classes de transformations continues. C.R. Acad. Sci. Paris. 202, 1400-1403 (1936).
[3] C. H. Dowker: Mapping theorems for non-compact spaces. Amer. J. Math., 69, 200-242 (1947).
[4] S. Lefschetz: Algebraic topology. Amer. Math. Soc. New York (1942).
[5] E. Spanier: Borsuk's cohomotopy groups. Ann. Math., 50, 203-245 (1949).

