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111. Uniform Convergence of Fourier Series

By Masako SATO
Mathematical Institute, Tokyo Metropolitan University
(Comm. by Z. SUETUNA, M.J.A., July 12, 1954)

J. P. Nash®” has proved the following theorem.

Theorem 1. If f(x) is of class ¢p(n) with bounded ¢'(n) and is
continuous with modulus of continuity w(), then there exist positive
constants A, B and C independent of f(x) such that

< |—A1 6 B " ,,,C,,,
s@-f@l=a(, )[algam+B P 1+ O

where 6(n) is monotone increasing and

. 0n+1) _ p(n+1)
1<0m)y<o¢pn); 1< o) = o)

In this theorem, a function f(x) is said to be of class ¢(n) if
o) [ " f@+1t) cos nt dt=0(1)

uniformly for all x, n, a, b with b—a < 2.

We shall prove the following generalization which contains the
Dini-Lipschitz test as a particular case.

Theorem 2. If f(x) is of class ¢(n), $(n) being On),” and s
continuous with modulus of continuity »(8), then there exist positive
constants A, B and C independent of f(x) such that

C

L) Is@-f@=e(, )[Algow+Blg 71+ O

where O(n) s monotone increasing and 1 < 6(n) < $(n).
Proof. It is sufficient to prove (1) for
@)~ f(@)=1 L) et fa——2r@l, St
We divide the integral into three parts such that

s¥(@)— f (@)= 7[ f /p(n) fﬁ(j ) f”

o/d#(n) BO(m)/d(n)

= -[I+J+K]

1) J P Nash Umform convergence of Fourler series, The Rlce Instltube Pamphlet
(1953).

In this paper we use the notation in Zygmund, Trigonometrical series, 1936.

2) As J.P. Nash shows, the assumption ¢(r7)=0(n) does not loose generality.
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say, where o and 8 are the least numbers >1 such that an/m$(n)
and Bne(n)/qr¢(n) are odd integers. Then®
in nt

_ [ si
I= f Tf@+t)+f@—t)—2f (@ 1 tantsz dt

sin nt

— {“"/’;s;f‘”‘l f (/’[ @+t +fe—t=2f @1 L0 dt
zg[:/"(—l)"“[f(x+t+k -1, ) +f(x t—kfﬁf—lﬂ—z‘f(x)]
. _sinng
2tant/2

:“;i_}:”f”m [{ (x+t+—2k—vr> f( +t+3—kf~rl )}

o

- {f < ~t=2 ") -f ‘ ot +1”>H 2 tan (Sztl—rpl ;Lliw/n)/zdt
G T ) o2 s
/'

1 1 .
- - td
[2 tan ¢+ 2km/n)2  2tan (t+(2lc+1)rn-/n)/2]sm nt dt

:Il +Iz
say, where for the sake of brevity we put y=n/r¢(n). We have

L] _w"r-z*:/’ fw" [ |f @+t +2kmr/n) —f @+ b+ @k +D)m/n) |

e t+2km/n
] f@—t—2km/n)—f (@—t—@2k+1)m/n)| ]
t+2km/n
ar <wf—‘%)/’ 1 1
éz“’(%‘) = (2Ic+1)7r/nf d=2v ( >:§ Ein n

<% (n ) logm_sb( =B (%) log?)(—):
(a-r—z‘%)/..f"ﬂ/n |: |f(@+t+ 2k +1)mw/n)—f ()]

L= -0 (& +2km/n)?
4 | fl@—t—@k+1)m/n)— f(»’v)l}
(t+2k7r/n)2
E(onu:;)/ 2]‘;:}7_}3»“ 27 /n 4__JL_. B 32 oy w(k/n)
= n ;% ( n ).[/ . (t+2km/n) = n? k=1 (k/n)?

2

*Bzm(l/n); A SBa’D(l/n) log ( )

8) Cf. R. Salem: Comptes Rendus, 207, 662 (1938).
4) B, B; and B; are absolute constants.
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Thus we have
| I| < Bw(1/n)log

( n)’
where B is a positive constant independent of f(x). Further

[P sm nt
J= df/m @D+ fe—t)-2f @) 0 dt

{BnB(n)/mg(n)}—1

=TS [T et @2 @] SO

k=an/mg(n,
an/gg(n) fm/m /2

= [T ST AL fla ot o) +f (b= o) 2 @)]

=ar—1
a/n

. sin nt
2 tan (¢ +kmw/n)/2

By using the first mean value theorem, we have

___gz BT0(m)— 2, ‘_(771) - i}
J_' N k=or-1 ztan(s_‘_kﬂ_ln)/z I:f(x""k /n-}-E)
+f(x—Fmr/n—8)—2f(@)],

where =/n < & < 2r/n. Hence
9 Broem—2

[ = == Ic=2~r-— 2‘kf—_rl_-iﬁ[lf(x+$+2kvr/n) —f@+E+@2k+1)m/n) |

+|f (@—E—2km[n)—f (x—E—(2k—1)m/n) | ]
< Aw(1/n) log 6(n),

where A is a positive constant independent of f(x).
We next prove that | K| =< C/¢p(n). By the second mean value

theorem

K= [7 [fa+rd+fe-—-2f@] 5

BOC2)/B(n)

sin nt l
ant/2

=M | (" (et t) +f@—t)—2f (@)] sinnt dt '
Ba(n) BOCn)/#(n) ’
where B6(n)/p(n) < <m. Since l f bf (x+t) sinnt dt ‘ < C,/¢p(n) for
an absolute constant C,, )

K| < $p(n) 4C, _ 4C,

BO(n) (n)  BO(n)
Thus there are positive constants A, B and C such that

|5 (@) —f @)] = w(1/n)| A log 6(n)+B log e )] 0((7”),

and the theorem is therefore proved.
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Theorem 3. If f(x) is of class ¢(n), ¢(n) being On), and s
continuous with modulus of continuwity w(8), where ¢(n) satisfies
o(1/n) log n/p(n) >0 as n-—>co, and moreover if 6(n) is monotone
wnereasing to infinity, such that 1 < 0(n) < ¢(n) and »(1/n) log 6(n) - 0
as n—>oo, then the Fourier series of f(x) converges uniformly to f ().

We may easily prove from Theorem 2

Corollary 1 (Dint-Lipschitz). If f(x) is continuous and

o(1/n)=0(1/log n),
then the Fourier series of f(x) converges uniformly.

For the proof it is sufficient to take ¢(n)=6(n)=1log » in Theorem
3.

Corollary 2. If f(x) is continuous and

»(1/n)=0(1/log log n),
f ’ S (xz+1t) cos nt dt=0(log n/n),

uniformly in x, n, a, b, where b—a < 2w, then the Fourier series of
J(x) converges uniformly.

For the proof it is sufficient to take ¢(n)=n/logn and (n)=logn
in Theorem 8.

Finally I wish to express my gratitude to Professor S. Izumi for
his suggestions and encouragement.



