157. The Divergence of Interpolations. I

By Tetsujiro Kakehashi
(Comm. by K. Kunugi, m.J.A., Oct. 12, 1954)

The convergence of interpolation polynomials to a given function in the points which satisfy a certain condition has been studied sufficiently by Walsh and others.

Let $f(z)$ be a function which is single valued and analytic throughout the interior of the circle $C_{R}:|z|=R>0$ and which has singularities on C_{R}. Let $W_{n}(z)$ be a sequence of polynomials of respective degrees n such that the sequence of $W_{n}(z) / z^{n}$ converges to $\lambda(z)$ analytic and non-vanishing exterior to a circle $C_{R}:|z|=R^{\prime}<R$ and uniformly on any closed limited point set exterior to $C_{R^{\prime}}$. Then the sequence of polynomials $S_{n}(z ; f)$ of respective degrees n found by interpolation to $f(z)$ in all the zeros of $W_{n+1}(z)$ converges to $f(z)$ uniformly on any closed set interior to C_{R}.

But the divergence of $S_{n}(z ; f)$ at every point exterior to C_{R} is not yet established in general, as far as I know. If we choose a certain condition of $W_{n}(z)$ which is stronger than the condition above-mentioned, the divergence at every point exterior to C_{R} can be proved. (Cf. T. Kakehashi: On the convergence-region of interpolation polynomials, Journal of the Mathematical Society of Japan, 6(1954).)

The purpose of this paper is to study the divergence of $S_{n}(z ; f)$ which interpolate to $f(z)$ with singularities of a certain type on C_{R}, in the points which satisfy the condition mentioned formerly.

1. Let $\varphi(t)$ be the function single valued and analytic on the circle $C_{R}:|t|=R>0, a$ be a point on C_{R} and m be a complex number. If the real part of m is positive, the integral

$$
\int_{c_{R}} \varphi(t)(t-a)^{m-1} d t \quad ; \quad a=R e^{i \alpha}
$$

exists. But if the real part of m is not positive, the above integral does not exist. For such cases, we define the finite part of the integral as follows:

$$
\begin{equation*}
\text { Pf. } \int_{c_{R}} \varphi(t)(t-a)^{m-1} d t=\int_{c_{R}} \psi(t)(t-a)^{m+p} d t \tag{1}
\end{equation*}
$$

where $\psi(t)$ is the function single valued and analytic defined by

$$
\begin{equation*}
\varphi(t)=\sum_{k=0}^{p} \frac{\varphi^{(k)}(a)}{k!}(t-a)^{k}+(t-a)^{p+1} \psi(t) \tag{2}
\end{equation*}
$$

and p is the largest positive integer such that the real part of $m+p$ is zero or negative.

Now we can consider the following.
Lemma 1. Let $\varphi(t)$ be the function single valued and analytic on and between the two circles C_{R} and $C_{R^{\prime}}:|t|=R^{\prime}<R$, and $a=R e^{i \alpha}$. Then

$$
\begin{equation*}
\text { Pf. } \int_{c_{R}} \varphi(t)(t-a)^{m-1} d t=\int_{c_{R^{\prime}}} \varphi(t)(t-a)^{m-1} d t . \tag{3}
\end{equation*}
$$

From the definition of $\operatorname{Pf} . \int_{c_{R}} \varphi(t)(t-a)^{m-1} d t$, we can easily verify the following equations.

$$
\text { Pf. } \begin{aligned}
\int_{c_{R}} \varphi(t)(t-a)^{m-1} d t & =\int_{c_{\boldsymbol{R}}} \psi(t)(t-a)^{p+m} d t \\
& =\int_{c_{R^{\prime}}} \psi(t)(t-a)^{p+m} d t=\int_{c_{R^{\prime}}} \varphi(t)(t-a)^{m-1} d t .
\end{aligned}
$$

Thus the lemma has been proved.
This lemma enables us to consider the integral on a contour on which the integrand has a certain type of singularities.

Let $\varphi(t)$ be the function single valued and analytic on the circle $C_{R}:|t|=R>0$ and m be a complex number not equal to a positive integer. We define $Y_{m}(\varphi ; a)$ by

$$
\begin{equation*}
Y_{m}(\varphi ; a)=\frac{\Gamma(1-m)}{2 \pi i} \operatorname{Pf} . \int_{c_{R}} \varphi(t)(t-a)^{m-1} d t: a=R e^{i \alpha}, \tag{4}
\end{equation*}
$$

where $(t-\alpha)^{m-1}$ take the principal value if m is not zero or negative integer, and Pf. can be omitted if the real part of m is positive. In the case when m is a positive integer, we define $Y_{m}(\varphi ; a)$ by

$$
\begin{gather*}
Y_{m}(\varphi ; a)=\frac{1}{2 \pi i} \int_{c_{R}} \varphi(t) L_{m}(t-a) d t ; a=R e^{i \alpha} \tag{5}\\
m=1,2, \ldots,
\end{gather*}
$$

where

$$
\left\{\begin{array}{l}
L_{1}(t)=\log t \tag{6}\\
L_{2}(t)=t(\log t-1) \\
L_{3}(t)=\frac{t^{2}}{2!}\left(\log t-1-\frac{1}{2}\right) \\
L_{k}(t)=\frac{t^{k-1}}{(k-1)!}\left(\log t-1-\frac{1}{2} \cdots-\frac{1}{k-1}\right)
\end{array}\right.
$$

and $\log t$ is the principal value of $\log t$.
The relation

$$
\begin{equation*}
Y_{m}\left(\varphi^{\prime} ; a\right)=Y_{n-1}(\varphi ; a)=\frac{d}{d a} Y_{m}(\varphi ; a) \tag{7}
\end{equation*}
$$

is clear from the definition of Y_{m} by partial integrations. And the operation Y_{m} is linear in the sense that, for any two functions φ_{1} and φ_{2} analytic and single valued on C_{R},

$$
Y_{m}\left(\varphi_{1}+\varphi_{2}\right)=Y_{m}\left(\varphi_{1}\right)+Y_{m}\left(\varphi_{2}\right)
$$

and for $\varphi_{n} ; n=1,2, \ldots$ analytic on C_{R}, if φ_{n} converges to zero uniformly on C_{R} as n tends to infinity,

$$
\lim _{n \rightarrow \infty} Y_{m}\left(\varphi_{n}\right)=0
$$

These relations can be verified from the definitions of Y_{m} and φ_{n}.
For z interior to C_{R}, if we put $\varphi(t)=\frac{1}{t-z}$, we have for any complex number m

$$
\begin{cases}Y_{m}\left(\frac{1}{t-z} ; a\right)=\Gamma(1-m)(z-a)^{m-1} & ; m \neq 1,2, \ldots \tag{8}\\ Y_{m}\left(\frac{1}{t-z} ; a\right)=L_{m}(z-a) & ; m=1,2, \ldots\end{cases}
$$

where L_{m} are defined by (6).
Hereafter we denote $Y_{m}\left(\frac{1}{t-z} ; a\right)$ by $y_{m}(z ; a)$ for simplicity.
Let $\varphi(t)$ be a function single valued and analytic on and within the circle C_{R}. Then $Y_{m}\left(\frac{\varphi(t)}{t-z} ; a\right)$ represents the function $\varphi(z) y_{m}(z ; a)$ which is analytic and single valued within C_{R} but not analytic on C_{R}, that is, which has a pole or branch point at $z=a$.
2. In this paragraph, we consider the divergence properties of the power series of a function which is analytic interior to the circle C_{R} and which has singularities of Y_{m} type on C_{R}.

At first we consider the following.
Lemma 2. Let $\varphi(t)$ be a function single valued and analytic on the circle $C_{R} ;|t|=R>0$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{m} a^{n} Y_{m}\left(t^{-n} \varphi(t) ; a\right)=(-1)^{m-1} a^{m} \varphi(a) \tag{9}
\end{equation*}
$$

If m is not a positive integer, we have

$$
\begin{aligned}
& Y_{m}\left(t^{-n}\right.; a)=\frac{\Gamma(1-m)}{2 \pi i} \text { Pf. } \int_{c_{R}} t^{-n}(t-a)^{m-1} d t \\
&=\frac{\Gamma(1-m)}{2 \pi i} \int_{c_{R^{\prime}\left(R^{\prime}<R\right)}} t^{-n}(t-a)^{m-1} d t=\frac{\Gamma(1-m)}{(n-1)!}\left[\frac{d^{n-1}}{d t^{n-1}}(t-a)^{m-1}\right]_{t=0} \\
& \quad=\frac{\Gamma(1-m)}{(n-1)!}(m-1)(m-2) \cdots(m-n+1)(-a)^{m-n}
\end{aligned}
$$

$$
\begin{aligned}
& =\Gamma(1-m) \frac{(-m+1)(-m+2) \cdots(-m+n+1)}{1 \cdot 2 \cdots(n-1)}(-1)^{m-1}(-a)^{m-n} \\
& \sim(-1)^{m-1} n^{-m} a^{m-n},
\end{aligned}
$$

by the well-known formula

$$
\lim _{n \rightarrow \infty} \frac{1 \cdot 2 \cdots(n-1)}{z(z+1) \cdots(z+n-1)}=\Gamma(z)
$$

where \sim signifies that the ratio of both sides tends to 1 as $n \rightarrow \infty$.
If m is a positive integer, we have, for n greater than m,

$$
\begin{aligned}
Y_{m}\left(t^{-n} ; a\right) & =\frac{1}{(n-1)!}\left[\frac{d^{n-1}}{d t^{n-1}} L_{m}(t-a)\right]_{t=0} \\
& =\frac{1}{(n-1)!}\left[\frac{d^{n-m-1}}{d t^{n-m-1}}(t-a)^{-1}\right]_{t=0} \\
& =\frac{(-1)^{n-m-1}(n-m-1)!}{(n-1)!}(-a)^{m-n} \\
& \sim(-1)^{m-1} n^{-m} a^{m-n} .
\end{aligned}
$$

Thus the validity of (9) can be verified when $\varphi(t) \equiv 1$, that is for any complex number, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{m} a^{n} Y_{m}\left(t^{-n} ; a\right)=(-1)^{m-1} a^{m} . \tag{10}
\end{equation*}
$$

We are now in a position to prove the lemma for $\varphi(t)$ in general. At first we consider the case when the real part of m is negative. In this case, $\varphi(t)$ can be expanded to

$$
\varphi(t)=\sum_{k=0}^{p} \frac{\varphi^{(k)}(a)}{k!}(t-a)^{k}+(t-a)^{p+1} \psi(t)
$$

where $\psi(t)$ is a function single valued and analytic on C_{k} and p is the largest positive integer such that the real part of $m+p$ is zero or negative. And we have

$$
\begin{aligned}
& n^{m} a^{n} Y_{m}\left(t^{-n} \varphi(t) ; a\right)=n^{m} a^{n} \varphi(a) Y_{m}\left(t^{-n} ; a\right) \\
& \quad+\sum_{k=1}^{p} \frac{\varphi^{(k)}(a)}{k!} \frac{\Gamma(1-m)}{\Gamma(1-m-k)} n^{m} a^{n} Y_{m+k}\left(t^{-n} ; a\right) \\
& \\
& \quad+n^{m} a^{n} \frac{\Gamma(1-m)}{\Gamma(-m-p)} Y_{m+p+1}\left(t^{-n} \psi(t) ; a\right)
\end{aligned}
$$

and if $m+p$ is zero, the last term must be replaced by

$$
n^{m} a^{n} \frac{\Gamma(1-m)}{2 \pi i} \int_{c_{\boldsymbol{R}}} t^{-n} \psi(t) d t
$$

The first term of the right side members tends to $(-1)^{m-1} a^{m} \varphi(\alpha)$ and others tend to zeros as n tends to infinity, by (10) and the boundedness of $a^{n} Y_{m+p+1}\left(t^{-n} \psi(t) ; a\right)$. The relation (9) has been proved in this case.

In the case when the real part of m is zero or positive, putting

$$
\varphi(t)=\varphi(\alpha)+\varphi^{\prime}(\alpha)(t-a)+(t-\alpha)^{2} \psi(t)
$$

we have

$$
\begin{gathered}
n^{m} a^{n} Y_{m}\left(t^{-n} \varphi(t) ; a\right)=n^{m} a^{n} \varphi(a) Y_{m}\left(t^{-n} ; a\right) \\
+n^{m} a^{n} \varphi^{\prime}(a) Y_{m}\left(t^{-n}(t-a) ; a\right)+n^{m} a^{n} Y_{m}\left(t^{-n}(t-a)^{2} \psi(t) ; a\right) .
\end{gathered}
$$

The first term of the right side members tends to $(-1)^{m-1} a^{m} \varphi(a)$ and the second tends to zero as $n \rightarrow \infty$ by (10). And we can verify that the last term tends to zero as $n \rightarrow \infty$ by partial integrations as the $(p+1)$ th derivative of $\psi(t)(t-a)^{m+1}$ or $\psi(t)(t-a)^{2} L_{m}(t-\alpha)$ is continuous, where p is the largest positive integer not greater than the real part of m.

Now the lemma has been established.
Let $\varphi(z)$ be a function single valued and analytic on and within the circle C_{R}. Partial sums of the power series of the function $\varphi(z) y_{m}(z ; a)$ is represented by

$$
\begin{gather*}
P_{n}\left(z, \varphi y_{m}\right)=Y_{m}\left(\frac{t^{n+1}-z^{n+1}}{t^{n+1}} \frac{\varphi(t)}{t-z} ; a\right) ; \tag{11}\\
n=0,1,2, \ldots .
\end{gather*}
$$

$P_{n}\left(z ; \varphi y_{m}\right)$ are polynomials of respective degrees n, and (11) is valid even for z exterior to C_{R}.

Theorem 1. Let $\varphi(z)$ be a function which is single valued and analytic on and within the circle $C_{R}:|z|=R>0$ and which does not vanish at $z=a$. Let $P_{n}\left(z ; \varphi y_{m}\right)$ be partial sums of the power series of $\varphi(z) y_{m}(z ; a)$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{m}\left(\frac{a}{z}\right)^{n} P_{n}\left(z ; \varphi y_{m}\right)=A \neq 0 \tag{12}
\end{equation*}
$$

for z exterior to C_{R}, where A is a complex number non-vanishing and dependent on a, z and φ. Accordingly, $P_{n}\left(z ; \varphi y_{m}\right)$ diverges at every point exterior to C_{R}.

The linearity of Y_{m} enables us the following calculations. That is, for a point z exterior to C_{R},

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} n^{m}\left(\frac{a}{z}\right)^{n} P_{n}\left(z ; \varphi y_{m}\right) \\
& \quad=\lim _{n \rightarrow \infty}\left\{Y_{m}\left[n^{m}\left(\frac{a}{z}\right)^{n} \frac{\varphi(t)}{t-z} ; a\right]-n^{m} a^{n} Y_{m}\left[t^{-(n+1)} \frac{\varphi(t)}{t-z} ; a\right]\right\} \\
& \quad=\lim _{n \rightarrow \infty}-n^{m} a^{n} Y_{m}\left(t^{-(n+1)} \frac{\varphi(t)}{t-z} ; a\right) .
\end{aligned}
$$

The function $\frac{\varphi(t)}{t-z}$ being single valued and analytic on and within the circle C_{k} and not vanishing at $t=a$, we can verify the relation (12) by lemma 2. Thus the theorem has been established.

