173. Dirichlet Problem on Riemann Surfaces. II (Harmonic Measures of the Set of Accessible Boundary Points)

By Zenjiro Kuramochi
Mathematical Institute, Osaka University
(Comm. by K. Kunugi, m.J.A., Nov. 12, 1954)

Let \underline{R} be a null-boundary Riemann surface with A-topology ${ }^{1)}$ and let R be a positive boundary Riemann surface given as a covering surface over \underline{R}. When a curve L on R converges to the boundary of R and its projection \underline{L} on \underline{R} tends to a point of \underline{R}^{*}, we say that L determines an accessible boundary point (A.B.P.) relative to \underline{R}^{*}. In the following we denote the set of all A.B.P.'s by $\mathfrak{U}\left(R, \underline{R}^{*}\right)$. We consider continuous super-harmonic function $v(z)$ in R such that $0 \leqq v(z) \leqq 1$ and $\lim v(z)=1$ when z tends to the boundary along every curve determining an A.B.P. and we denote by $\mu\left(R, \mathfrak{Y}\left(R, \underline{R}^{*}\right)\right)$ the lower envelope of above functions which is harmonic in R on account of Perron-Brelot's theorem. We also consider $\mathfrak{H}\left(R^{\infty}, \underline{R}^{*}\right)$ and $\mu\left(R^{\infty}, \mathfrak{H}\left(R^{\infty}, \underline{R}^{*}\right)\right)$ defined similarly on R^{∞}. In the following we assume that the universal covering surface of the projection of R on \underline{R} is hyperbolic. Then there exists a nullboundary Riemann surface \underline{R}^{\prime} such that the projection of $R \subset \underline{R}^{\prime}, \underline{R}^{\prime}$ $\subset \underline{R}$ and that $\underline{R}^{\prime \infty}$ is hyperbolic. We map $\underline{R}^{\prime \infty}$ and R^{∞} conformally onto $U_{\eta}:|\eta|<1$ and $U_{\xi}:|\xi|<1$ respectively. Let l_{ξ} be a curve in U_{ξ} determining an A.B.P. of R^{∞}, whose projection on \underline{R}^{\prime}. Then we see that l_{ξ} converges to a point $\xi_{0}:\left|\xi_{0}\right|=1$ and $\underline{z}=\underline{z}(\xi): U_{\xi} \rightarrow R \rightarrow \underline{R}^{\prime}$ has an angular limit at ξ_{0}. It follows that $\underline{z}=\underline{z}(\xi)$ has angular limits at every point of A_{ξ}^{\prime} with respect to \underline{R}^{\prime}, where A_{ξ}^{\prime} is the set of points ξ^{\prime} on $|\xi|=1$ such that at least one curve determining A.B.P. with projection in \underline{R} terminates at ξ^{\prime}.

Let $\left\{\boldsymbol{R}_{\lambda}^{\prime}\right\}$ be an exhaustion of \underline{R}^{\prime} and $\Delta_{t, n, n}(\theta)$ be the set such that $\frac{1}{n} \leqq\left|\xi-e^{i \theta}\right|<\frac{1}{m}$ and $\left|\arg \left(1-e^{-i \theta} \xi\right)\right|<\frac{\pi}{2}-\frac{1}{l}$ and let $\delta(f(\xi))$ be the diameter of the set $f(\xi): \xi \in J_{t, m, n}(\theta)$ with respect to the A topology. Then we have

$$
A_{\xi}^{\prime}=\varepsilon \varepsilon_{\theta}\left[\sum_{\lambda} \prod_{i} \prod_{k} \sum_{m} \prod_{n} \delta(f(\xi)) \leqq \frac{1}{k} \leftarrow \xi \in \Delta_{l, m, m+n}(\theta)\right]
$$

Since $\delta(f(\xi))$ is continuous with respect to θ for fixed l, m and n, this shows that A_{ξ}^{\prime} is a Borel set.
M. Ohtsuka has proved the next

1) See, Dirichlet problem. I.

Theorem 2.1. If the universal covering surface of the projection is of hyperbolic type, we have

$$
\omega\left(U_{\xi}, A_{\xi}^{\prime}\right)=\mu\left(R^{\infty}, \mathfrak{Y}\left(R^{\infty}, \underline{R}^{*}\right)\right),{ }^{2)}
$$

where $\omega\left(U_{\xi}, A_{\xi}^{\prime}\right)$ is the harmonic measure of A_{ξ}^{\prime}.
Theorem 2.2. Let the universal covering surface of the projection of R be hyperbolic and map R^{∞} onto $U_{\xi}:|\xi|<1$ conformally. Let D be the normal polygon of Fuchsian group containing $\xi=0$ with arcs $\alpha_{i}(i=1,2, \ldots)$ on $|\xi|=1$ and let $T_{j}(j=1,2, \ldots)$ be the substitutions of Fuchsian group.

If mes $\left(\sum_{j} T_{j}\left(\sum_{i} \alpha_{i}\right)\right)=2 \pi$, we have

$$
\mu\left(R^{\infty}, \mathfrak{Y}\left(R^{\infty}, \underline{R}^{*}\right)\right)=\mu\left(R, \mathfrak{A}\left(R, \underline{R}^{*}\right)\right) .
$$

Proof. Let A_{ξ} be the set of points such that at least one curve determining an A.B.P. on $\left.\mathfrak{H}\left(R, R^{*}\right)\right)$ terminates there. Then A_{5} is measurable and $\mu\left(R^{\infty}, \mathfrak{Y}\left(R^{\infty}, \underline{R}^{*}\right)\right)=\mu\left(R^{\infty}, \mathfrak{M}\left(R^{\infty}, \underline{R}\right)\right)=\omega\left(U_{\xi}, A_{\xi}\right)$. Assume $\mu\left(R, \mathfrak{H}\left(R, \underline{R}^{*}\right)\right) \supsetneqq \mu\left(R^{\infty}, \mathfrak{Y}\left(R^{\infty}, \underline{R}^{*}\right)\right)$, then there exists, out side of A_{ξ}, a set E_{δ} of positive measure such that $\mu\left(R, \mathfrak{Y}\left(R, \underline{R}^{*}\right)\right)$ has angular limits larger than $\delta(\delta>0)$.

Since $\operatorname{mes}\left(E_{\delta} \cap\left(\sum_{j} T_{j} \sum_{i} \alpha_{i}\right)\right)=\operatorname{mes} E_{\delta}$, there exist $\left\{\alpha_{i}\right\}$ and an integer m such that mes $\left(\sum_{j} T_{j}\left(\sum_{i=1}^{m}\left(\alpha_{i}-\alpha_{i}^{\prime}\right)\right)<\frac{1}{4}\right.$ mes E_{δ}, where α_{i}^{\prime} is a sub-arc of α_{i} such that α_{i} and α_{i}^{\prime} have no common endpoints. Take closed sets $F_{\delta}^{i}(i=1,2, \ldots m)$ such that $F_{\delta}^{i} \subset\left(\alpha_{i}^{\prime} \cap E_{\delta}\right)$ and mes $\left(\sum_{j} T_{j}\left(\sum_{i=1}^{m} F_{\delta}^{i}\right)\right)$ $>\frac{1}{2}$ mes E_{δ}. Denote by $\omega(F)$ the harmonic measure of $\sum_{j} T_{j}\left(\sum_{i=1}^{m} F_{\delta}^{i}\right)$. Then it is automorphic with respect to Fuchsian group and $\omega(F)$ has limit zero along every curve terminating at ($\alpha_{i} \cap$ complement of $\left.\sum_{i=1}^{m} F_{\delta}^{i}\right)$. Put $J_{l}^{\lambda}=\varepsilon_{\varepsilon}[\omega(F) \geqq \lambda] \cap C_{l}\left(\sum_{i=1} F_{\delta}^{i}\right)$, where $C_{l}\left(\sum_{i=1} F_{\delta}^{i}\right)$ is the set of point z of R such that $\operatorname{dist}\left(z, \sum^{m} F_{\delta}^{i}\right)>\frac{1}{l}$ on D, and let $\omega_{m, m+i}^{\lambda, l}(z)$ be a harmonic function in $R_{m+i}-\left\{\left(R_{m+i}-R_{m}\right) \cap J_{l}^{\lambda}\right\}$ such that $\omega_{m, m+i}^{\lambda, l}(z)$ $=0 \quad$ on $\partial R_{m+i}-J_{l}^{\lambda}$ and $\omega_{m, m+i}^{\lambda, l}(z)=1$ on $\partial J_{l}^{\lambda} \cap\left(R_{m+i}-R_{m}\right)+\partial R_{m} \cap J_{l}^{\lambda}$. Then it is clear $\omega_{m}^{\lambda, l}(z)=\lim _{i=\infty} \omega_{m, m+i}^{\lambda, l}(z)$ is super-harmonic and $\omega^{\lambda, l}(z)$ $=\lim _{m=\infty} \omega_{m}^{\lambda, l}(z)$ has limit 0 on $\alpha_{i} \cap F_{\delta}^{i}$ and moreover $\omega(F)-\lambda \omega^{\lambda, l}(z) \geqq 0$. Thus $\omega^{\lambda, l}(z)=0$, because $\omega^{\lambda, l}(z)$ has the angular limit 0 almost everywhere on $|\xi|=1$. Hence we can easily construct a super-harmonic function $w(z)$ such that $w(z)=\infty$ along every curve tending to the
2) This theorem is proved under a little weaker condition. See, M. Ohtsuka: On covering surfaces over an abstract Riemann surface, Nagoya Math. Journ., 4, 109-118 (1952).
3) See 5).
boundary in $\sum_{l, \lambda>0}^{l=\infty} J_{l}^{\lambda}$. Then $S(z)=\operatorname{Min}[1, v(z)-\delta \omega(F)+\varepsilon w(z)]$ has the limit l along every curve determining an A.B.P. Hence $\mu\left(R, \mathfrak{R}\left(R, \underline{R}^{*}\right)\right)$ $\leqq \mu\left(R, \mathfrak{P}\left(R, \underline{R}^{*}\right)\right)-\delta \omega(F)$. This is absurd, therefore

$$
\mu\left(R, \mathfrak{Y}\left(\left(R^{\infty}, \underline{R}^{*}\right)\right) \leqq \mu\left(R^{\infty}, \mathfrak{Y}\left(R^{\infty}, \underline{R}^{*}\right)\right) .\right.
$$

On the other hand $\mu\left(R^{\infty}, \mathfrak{H}\left(R^{\infty}, \underline{R}^{*}\right)\right) \leqq \mu\left(R, \mathfrak{H}\left(R, \underline{R}^{*}\right)\right)$, since every $v(z)$ on R can be considered on R^{∞}.

Corollary. If R is a Riemann surface of finite connectivity and R is hyperbolic, $\quad \mu\left(R^{\infty}, \mathfrak{H}\left(R^{\infty}, \underline{R}^{*}\right)\right)=\mu\left(R, \mathfrak{N}\left(R, \underline{R}^{*}\right)\right)$.

Since R is a metric space, $R+\mathfrak{Y}\left(R, \underline{R}^{*}\right)$ is also a metric space. Let l_{ξ} be a continuous curve in U_{ξ} such that whose projection L on R converges to a point of $\mathfrak{Y}\left(R, \underline{R}^{*}\right)$ with respect to the metric of R. Then the projection \underline{L} of L on \underline{R} converges to a point $\underline{p}_{0} \in \underline{R}^{*}$. If $\underline{p}_{0} \in \underline{R}$, the composed function $\underline{z}=\underline{z}(\xi): R^{\infty} \rightarrow \underline{R}$ has an angular limit \underline{p}_{0}. It follows that l_{ξ} tends to a point ξ_{0}. Therefore $\underline{z}(\xi)$ has the angular limit \underline{p}_{0}. Hence $z(\xi): R^{\infty} \rightarrow R+\mathfrak{Y}\left(R, \underline{R}^{*}\right)$ has the angular limit p_{0}. We denote by $A_{\xi}^{\prime \prime}$ the set on $|\xi|=1$ such that at least one l_{ξ} above-mentioned terminates. Let E_{g} be a set on $|\xi|=1$ where the Green's function of R has an angular limit 0 . If l_{ξ} is a Stolz's path terminating at $\xi_{0} \in A_{\xi}^{\prime} \cap E_{g}$, then the projection L of l_{ξ} on R tends to the boundary of R and has the projection \underline{L} on \underline{R} which tends to a point $\underline{p} \in \underline{R}$. Thus l_{ξ} determines an A.B.P. of $\mathfrak{A}(R, \underline{R})$. Hence

$$
A_{\xi}^{4)} \supset A_{\xi}^{\prime \prime} \supset\left(A_{\xi}^{\prime} \supset E_{g}\right) .
$$

Let \mathfrak{F} be a closed subset of $\mathfrak{Y}\left(R, \underline{R}^{*}\right)$ and let F be the set on $|\xi|=1$ such that at least one curve determining an A.B.P. of \mathfrak{F} terminates. We call F the hyper image ot \mathfrak{F}. Put

$$
F^{\prime}=\varepsilon \underset{\theta}{\varepsilon}\left[\prod _ { l } \prod _ { k } \sum _ { m } \prod _ { n } \left(\text { distance }\left(f\left(r_{m, m+n}(\theta) . \widetilde{F}\right) \leqq \frac{1}{k}\right]\right.\right.
$$

where $r_{m, m+n}(\theta)$ is a segment of the radius such that $1-\frac{1}{m} \leq|\xi|<1-\frac{1}{n}$, $\arg \xi=\theta$. Hence F^{\prime} is measurable. We call F^{\prime} the image of \mathfrak{F}. Then

$$
\begin{gathered}
\left(F^{\prime} \cap A_{\xi}^{\prime}\right) \subset F \subset\left\{B_{\xi}+\left(A_{\xi}^{\prime} \cap F^{\prime}\right)\right\} \quad \text { and } \\
\left(F \cap A_{\xi}^{\prime} \cap E_{g}\right) \subset F^{\prime \prime} \subset F,
\end{gathered}
$$

where B_{ξ} is the set where at least one curve determining an A.B.P. of R whose projection lies on B of \underline{R} terminates.

Let $\mu\left(R^{\infty}, \mathfrak{F}\right)$ be the lower envelope of super-harmonic functions $v(z)$ such that $0 \leqq v(z) \leqq 1$, lim $v(z)=1$ along every curve determining an A.B.P. of R^{∞} lying on \mathfrak{F} and let $\mu\left(R^{\infty}, \mathfrak{Y}\left(R^{\infty}, B\right)\right), \mu\left(\underline{R}^{\infty}, \mathfrak{Y}\left(\underline{R}^{\infty}, B\right)\right)$
4) See, the proof of theorem $2.2 \cdots A_{\xi}$ is a hyper image of $\mathfrak{A}\left(R^{\infty}, \underline{R} *\right)$.
be the lower envelopes of $v_{B}\left(R^{\infty}\right)$ and $v_{B}\left(\underline{R}^{\infty}\right)$ such that $\lim v_{B}\left(R^{\infty}\right)=1$, $\lim v_{B}\left(\underline{R}^{\infty}\right)=1$ along every curve determining an A.B.P. of R^{∞} and \underline{R}^{∞} lying on B of \underline{R}. Since at every point of $F^{\prime} \cap A_{\xi}^{\prime}, \lim v(z)=1$ along radial segments, $\omega\left(U_{\xi}, F^{\prime} \cap A_{\xi}\right) \leqq \mu\left(R^{\infty}, F \cap A_{\xi}\right) \leqq \mu\left(R^{\infty}, \Im\right) \leqq \mu(R$, $\mathfrak{H}(R, B)+\mu\left(R^{\infty}, A_{\xi}^{\prime} \cap F^{\prime}\right)$. Since $\mu\left(R^{\infty}, \mathfrak{Y}\left(R^{\infty}, B\right)\right) \leqq \mu\left(\underline{R}^{\infty}, \mathfrak{Y}\left(\underline{R}^{\infty}, B\right)\right)=0,{ }^{5)}$ mes $\left|A_{\xi}-A_{\xi}^{\prime \prime}\right|=0$ and since $\omega\left(U_{\xi}, F^{\prime} \cap A_{\xi}\right) \geqq \mu\left(R^{\infty}, A_{\xi} \cap F^{\prime}\right)$, we have $\omega\left(U_{\xi}, F^{\prime}\right)=\omega\left(U_{\xi}^{\prime}, F^{\prime} \cap A_{\xi}\right)=\mu\left(R^{\infty}, \mathfrak{\Re}\right)=\omega\left(U_{\xi}, F^{\prime \prime}\right)$, because mes $\left|E_{g}\right|=2 \pi$.

Theorem 2.3. Let R be a positive boundary Riemann surface and let the universal covering surface of the projection of R over \underline{R} be hyperbolic, if $\quad \mu\left(R, \mathfrak{Y}\left(R, \underline{R}^{*}\right)\right)=\mu\left(R^{\infty}, \mathfrak{Y}\left(R^{\infty}, \underline{R}^{*}\right)\right)$, then

$$
\mu(R, \mathfrak{F})=\mu\left(R^{\infty}, \mathfrak{F}\right)=\omega\left(U_{\mathfrak{\xi}}, F^{\prime}\right)
$$

for every closed subset \mathfrak{F} of $\mathfrak{H}\left(R, \underline{R}^{*}\right)$.
Proof. Put $\mathfrak{Y}\left(R, \underline{R}^{*}\right)$ in the place of \mathfrak{F} in the above equality and regard that $\underline{z}=z(\xi)$ has angular limits on \underline{R} at a set on $|\xi|=1$ where at least one curve determining an A.B.P. of $\mathfrak{H}(R, \underline{R})$ terminates. Then we have $\mu\left(R^{\infty}, \mathfrak{H}\left(R, \underline{R}^{*}\right)\right) \mu\left(R^{\infty}, \mathfrak{N}(R, \underline{R})\right)=\omega\left(U_{\xi}, A_{\xi}\right)$. We denote by \mathscr{J}_{n} all points z of $R+\mathfrak{H}\left(R, \underline{R}^{*}\right)$ such that z has a distance $\leqq \frac{1}{n}$ from \mathfrak{F}. Then $\mathfrak{F}=\bigcap_{n} \mathscr{F}_{n}$, and the image F_{n} of \mathscr{F}_{n} on $|\xi|=1$ is measurable and $z=z(\xi)$ has angular limits on R at F_{n}^{\prime}. Let $\left\{R_{m}\right\}$ be an exhaustion of R with compact relative boundaries $\left\{\partial R_{m}\right\}$ and let $\partial \mathfrak{F}_{n}$ be the relative boundary of \mathfrak{F}_{n}. Let $\omega_{m, m+i}^{n}(z)(n, m, i=1,2, \ldots)$ be the harmonic function in $R_{m+i}-\left(F_{n} \cap\left(R_{m+i}-R_{m}\right)\right)$ such that $\omega_{m, m+i}^{n}(z)=1$ on $\left\{\partial \dddot{豸}_{n} \cap\right.$ $\left.\left(R_{m+i}-R_{m}\right)\right\}+\left(\mathfrak{F}_{n} \cap \partial R_{m}\right)$ and $\omega_{n, m+i}^{n}(z)=0$ on $\partial R_{m+i}-\mathfrak{F}_{n}$. Then $\omega_{m}^{n}(z)$ $=\lim _{i=\infty} \omega_{m, m+i}^{n}(z)$ is super-harmonic in R and $\lim _{m} \omega_{m}^{n}(z) \geqq \mu\left(R, \mathfrak{F}_{n}\right)$ for every n. Assume, $\mu(R, \mathfrak{F}) \geqq \mu\left(R^{\infty}, \mathfrak{F}\right)$. Then there exist a number n and a closed subset E_{δ}^{\prime} in $A_{\xi}^{\prime} \cap C F_{n}^{\prime}$ for sufficiently small number δ such that $\mu\left(R, \mathfrak{\vartheta}_{n}\right)$ has angular limits larger than δ and $z=z(\xi)$ converges uniformly inside an angular domain: $|\arg | \xi-e^{i \theta}| |<\frac{\pi}{2}-\delta^{\prime}$ $\left(\delta^{\prime}>0\right)$ for every point $e^{i \theta}$ of E_{δ}, because $\omega\left(U_{\xi}, A_{\xi}^{\prime}\right)=\mu\left(R, \mathfrak{H}\left(R, \underline{R}^{*}\right)\right)$ $\geqq \mu(R, \mathfrak{F})$ implies that $\mu(R, \mathfrak{F})$ has angular limits 0 almost everywhere on $C A_{\xi}$ (complementary set of $\left.A_{\xi}\right)$. Let $D_{\lambda}\left(E_{\delta}\right)$ be the domain in U_{ξ} such that $D_{\lambda}\left(E_{\delta}\right)$ contains the endpart of the angular domain $\left|\arg \left(1-e^{-i \theta} \xi\right)\right|<\frac{\pi}{2}-\lambda$ at every point $e^{i \theta}$ of E_{δ}. On the other hand the universal covering surface R_{m}^{∞} is mapped onto a simply connected domain containing $\xi=0$ such that $\bigcup_{m} R_{m}^{\infty}=U_{\xi}$. Let H_{r} be the ring

[^0]domain such that $r<|\xi|<1$. Then there exists r such that $z=z(\xi)$ has a distance $\geqq \frac{1}{2 n}$ from \mathscr{F}_{n}, where $\xi \in H_{r} \cap D_{\lambda}\left(E_{\delta}\right)$, because $z=z(\xi)$ has an angular limits of A.B.P.'s of R which have a distance $\geqq \frac{1}{n}$ from \mathfrak{F}. Let $D_{\lambda}^{\prime}\left(E_{\delta}\right)$ be a component of $H_{r} \cap D_{\lambda}\left(E_{\delta}\right)$ which has a closed subset of positive measure of E_{δ} and let $\omega(\xi)$ be a harmonic function such that $\omega(\xi)=1$ on the boundary of $D_{\lambda}^{\prime}\left(E_{\delta}\right)$ except one on $|\xi|=1$ and $\omega(\xi)=0$ on $|\xi|=1$. Consider $\omega_{m}^{n}(z)$ in U_{ξ}, we see easily that $\omega_{m}^{\operatorname{sn}}(z) \leqq \omega(\xi)$ for every m, because the image of $\partial \dddot{y}_{n}$ does never fall in $D_{\lambda}^{\prime}\left(E_{\delta}\right)$. Since the boundary of $D_{\lambda}^{\prime}\left(E_{\delta}\right)$ is rectifiable, there exists a set of positive measure on $|\xi|=1$ where $\omega(\xi)=0$. Hence $\mu(R, \mathfrak{F})$ $\leqq \lim _{n} \omega^{2 n}(z) \leqq \omega(\xi)$, whence $\mu(R, \mathfrak{F})$ has an angular limit 0 almost everywhere on E_{δ}. This is a contradiction. Thus we have
$$
\mu(R, \mathfrak{F})=\mu\left(R^{\infty}, \mathfrak{F}\right) .
$$

Let \underline{R}^{\prime} be the projection of R on \underline{R}. If $\underline{R}^{\prime \infty}$ of R is parabolic ($\underline{R}^{\prime \infty}$ cannot be mapped onto a unit-circle conformally) we remove a finite number of points $p_{1}, p_{2}, \ldots, p_{n}$ (if R is closed and its genus is zero or one, then the number of points which are to be remove, is three or one respectively) and remove all the points $p_{i_{j}}(j=1,2, \ldots)$ lying on p_{i} from R. Denote the remaining surface by \widetilde{R} and define $\mu\left(\widetilde{R}, \mathfrak{n}\left(\widetilde{R}, \underline{R}^{*}\right)\right)$ and $\mu\left(\widetilde{R}^{\infty}, \mathfrak{H}\left(\widetilde{R}, \underline{R}^{*}\right)\right)$ similarly. In the following we assume that R has at least one A.B.P. M. Ohtsuka has proved the following:
$\mu\left(R, \mathfrak{A}\left(R, \underline{R}^{*}\right)\right)=\mu\left(\widetilde{R}, \mathfrak{H}\left(\widetilde{R}, \underline{R}^{*}\right)\right) \geqq \mu\left(R^{\infty}, \mathfrak{H}\left(R^{\infty}, \underline{R}^{*}\right)\right) \geqq \mu\left(\widetilde{R}, \mathfrak{H}\left(\widetilde{R}, R^{*}\right)\right)$ and if R is a null-boundary Riemann surface, $\mu\left(R, \mathfrak{H}\left(R, \underline{R}^{*}\right)\right)=\mu(\widetilde{R}, \mathfrak{H}(\widetilde{R}$, $\left.\left.\underline{R}^{*}\right)\right)=1$ and $\mu\left(R^{\infty}, \mathfrak{Y}\left(R^{\infty}, \underline{R}^{*}\right)\right)=0$. He proposed the problem: does there exist a case when the inequality holds? We show that there are these cases.

Example. Let $B_{2 n}, B_{2 n-1}: n$ $=1,2, \ldots$ be the system of closed domains in $|z|<1$ such that

$$
\begin{aligned}
& B_{2 n}: 1-\frac{1}{4 n+3} \leqq r \leqq 1-\frac{1}{4 n+4}: \frac{3}{4} \pi \leqq \theta \leqq \frac{\pi}{4} \quad\left(\text { containing }-\frac{\pi}{2}\right) \\
& B_{2 n-1}: 1-\frac{1}{4 n} \leqq r \leqq 1-\frac{1}{4 n+1}:-\frac{3}{4} \pi \geqq \theta \geqq-\frac{5 \pi}{4} \quad\left(\text { containing } \frac{\pi}{2}\right) .
\end{aligned}
$$

We can construct a holomorphic function $f(z):|z|<1$ by Runge's theorem such that $|f(z)-1|<\frac{1}{n}$ in $B_{2 n}$ and $|f(z)|<\frac{1}{n}$ in
B_{2-1}. It is clear that $f(z)$ is not bounded in $|z|<1$. Since the value $w=f(z)=\infty$ is an exceptional point, there exists at least one asymptotic path along which $f(z)$ tends to ∞, when z converges to the boundary of the unit-circle. Let l be an asymptotic path with starting point p_{0} where $\left|f\left(p_{0}\right)\right|=M_{0}$. Then l is not contained in $\sum_{m=n_{0}}^{\infty}\left(B_{2 n}+B_{2 n-1}\right)$ for a number n_{0} and determines an A.B.P. \mathfrak{P} lying over $w=\infty$. Let p_{r} be the first point where l passes $|z|=r$, and let l_{r} be the part of l between p_{0} and p_{r}. Let $v_{l}(z)$ be a continuous super-harmonic function such that $0 \leqq v_{l}(z) \leqq 1$ and $\lim v_{l}(z)=1$, when z tends to $|z|=1$ along l. Then there exists r_{δ} such that $v_{l}(z) \geqq 1-\delta$ on $l-l_{r_{\delta}}$ for a given number δ. Consider the part $l_{r_{2} r_{1}}=l_{r_{2}}-l_{r_{1}}$, then $l_{r_{2} r_{1}}$ connects two circles $|z|=r_{1}$ and $|z|=r_{2}\left(r_{2}>r_{1}>1-\frac{1}{4 n}: n \geqq n_{0}\right)$. Without loss of generality, we can suppose that l has a branch in the left semi-circle. Let A, B, C, D, E and F be points shown in the figure and let D_{n} be the simply connected domain with boundary $\overline{A B}+\overparen{B C}+\overparen{C D}+\overparen{D E F A}$ and let $\omega_{n}(z)$ be the harmonic measure of $\overparen{B C}$ with respect to D_{n}. Then we see that $v_{l}(z) \geqq(1-\delta) \omega_{n}(z)$ and $v_{l}(0)$ $\geqq(1-\delta) \omega_{n}(0) \geqq \delta_{1}\left(\delta_{1}>0\right)$ for every n. We denote by U the unit-circle and let $v(U, z, \mathfrak{F})$ be a continuous super-harmonic function such that $0 \leqq v(U, z, \mathfrak{F}) \leqq 1$ and $\lim v(U, z, \mathfrak{F})=1$ along l every curve tending to \mathfrak{F} and let $\mu(U, z, \mathfrak{F})$ be their lower envelope. Since $\{v(U, z, \mathfrak{F})\}$ is contained in the class $\left\{v_{t}(z)\right\}$, we have $\mu(U, z, \mathfrak{F}) \geqq \delta_{1}$ at 0 .

We remove all points $\left\{z_{i}\right\}$ where $f\left(z_{i}\right)=0$, or 1 or 2 from U_{1} and denote by \tilde{U} the remaining surface. Map \widetilde{U}^{∞} onto $U_{\xi}:|\xi|<1$ conformally. Let $\left\{\Re_{\infty}\right\}$ be the set of all A.B.P.'s of \tilde{U} whose projection lie on $w=\infty$ and let $E_{\xi, \infty}$ be the hyper image of $\left\{\mathfrak{F}_{\infty}\right\}$. Then $E_{\xi, \infty}$ is a set of linear measure zero. Let $v\left(U_{\xi},\left\{\mathfrak{B}_{\infty}\right\}\right)$ and $v\left(U_{\xi}, E_{\xi, \infty}\right)$ be superharmonic function in U_{ξ} such that $\lim v\left(U_{\xi},\left\{\Re_{\infty}\right\}\right)=1$ when z tends to $E_{\xi, \infty}$. Then
$\mu\left(\tilde{U}^{\infty}, \mathfrak{P}\right) \leqq \mu\left(\tilde{U}^{\infty},\left\{\mathfrak{P}_{\infty}\right\}\right) \leqq \omega\left(U_{\xi}, E_{\xi, \infty}\right)=0$, where $\mu\left(\tilde{U}^{\infty}, \mathfrak{P}\right)$ and $\mu\left(\tilde{U},\left\{\mathfrak{P}_{\infty}\right\}\right)$ are the lower envelopes of $v\left(U_{\xi}, \mathfrak{P}\right)$ and $v\left(U_{\xi},\left\{\mathfrak{P}_{\infty}\right\}\right)$.
Since \mathfrak{F} is closed, we can conclude by Theorem 2.3 that

$$
\begin{gathered}
\mu(U, \mathfrak{P})=\mu(\tilde{U}, \mathfrak{P}) \mu \nRightarrow\left(\widetilde{U}^{\infty}, \mathfrak{P}\right) \text { implies } \\
\mu\left(\widetilde{U}, \mathfrak{M}\left(U, \underline{R}^{*}\right)\right) \gtreqless \mu\left(\widetilde{U}^{\infty}, \mathfrak{H}\left(U, \underline{R}^{*}\right)\right) .
\end{gathered}
$$

We consider U as a Riemann surface R, then we have

$$
\mu\left(R^{\infty}, \mathfrak{y t}\left(R^{\infty}, \underline{R}^{*}\right)\right) \geqq \mu\left(\widetilde{R}^{\infty}, \mathfrak{A}\left(\widetilde{R}^{\infty}, \underline{R}^{*}\right)\right) .
$$

Similarly, if we consider \tilde{U} as a Riemann surface R, then we have

$$
\mu\left(R, \mathfrak{A}\left(R, \underline{R}^{*}\right)\right) \geqq \mu\left(R^{\infty}, \mathfrak{A}\left(R^{\infty}, \underline{R}^{*}\right)\right) .
$$

[^0]: 5) Map R of a null-boundary Riemann surface onto $U_{\xi}:|\xi|<1$ and let E the image of the ideal boundary of R. Then mes $E=0$. See, M. Tuji: Some metrical theorems on Fuchsian groups, Kodai Math. Sem. Rep., Nos. 4-5, 27-44 (1950).
