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173. Dirichlet Problem on Riemann Surfaces. II
(Harmonic Measures of the Set o Accessible Boundary Points)

By Zenjiro KURAMOCH
Mathematical Institute, Osaka University

(Comm. by K. KUNUGI, M.J.A., Nov. 12, 1954)

Let __R be a null-boundary Riemann surface with A-topology
and let R be a positive boundary Riemann surface given as a
covering surface over R_. When a curve L on R converges to the
boundary of R and its projection _L on __R tends to a point of R*,
we say that L determines an accessible boundary point (A.B.P.)
relative to __R*. In the following we denote the set of all A.B.P.’s
by (R, R*). We consider continuous super-harmonic function v(z)
in R such that 0v(z)l and limv(z)=l when z tends to the
boundary along every curve determining an A.B.P. and we denote
by t(R, (R, R*)) the lower envelope of above functions which is
harmonic in R on account of Perron-Brelot’s theorem. We also
consider I(R,*) and t(R,I(R,R*)) defined similarly on R.
In the following we assume that the universal covering surface of
the projection of R on is hyperbolic. Then there exists a null-
boundary Riemann sur2ace R such that the projection o2 RR__, R__
R and that R is hyperbolic. We map R__ and R conformally
onto U’IvI<I and U’I$I<I respectively. Let l be a curve in
U determining an A.B.P. o2 R, whose projection on R. Then we
see that l converges to a point $o’I$01-1 and z_--z_($)- U-R-->R
has an angular limit at $o. It 2ollows that z_=z($) has angular
limits at every point o A with respect to R, where A is the
set o points on I1-1 such that a least one curve determining
A.B.P. with projection in R terminates at .

Let [R} be an exhaustion of R and ,,(0) be the set such

that 1__ $- e !< _1 and arg (1- e-) <-----1 and let (f(@) be
n m 2 1

the diameter of the set f($)’$ e ,,.(0) with respect to the A-
topology. Then we have

Since (f()) is continuous wih respect to 0 for fixed 1, m and
n, this shows that A is a Borel set.

M. Ohtsuka has proved the next

1) See, Dirichlet problem. I.
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Theorem 2.1. If the universal covering surface of the projection
is of hyperbolic type, we have

(U, A)-(R", ’I(R-, R*)),)

where o(U, A) is the harmonic measure of A.
Theorem 2.2. Let the universal covering surface of the projection

of R be hyperbolic and map R onto U’i i<1 conformally. Let D
be the normal polygon of Fuchsian group containing =0 with arcs
a (i=1, 2,...) on 1 and let T (j--l, 2,...) be the substitutions
of Fuchsian group.

If mes (T( a))-2, we have

,(R, ?I(R-, *))-- ,(R, (R, *)).
Proof. Let A be the set o points such that at least one curve

determining an A.B.P. on (R, *)) terminates there. Then A is

measurable and (R, ?I(R, *))-(R, (R, ))=o(U, A). Assume
(R, (R, *)) (R, ?I(R, *)), then there exists, out side of A,
a set E of positive measure such that (R, ?I(R, *)) has angular
limits larger than ( >0).

Since mes(E(T a)) mesE, there exist [a and an integer

is a sub-arcm such that mes (T((a- ag)) <mes E, where a,

have no common endpoints. Take closed setsof a such Chat a and a

F (i--1, 2,... m) such that F (ag E) and rues ( T( F))
=

> mes E. Denote by (F) the harmonic measure of T(F).
2 =

Then i is auomorhie wih resee o Fuehsian ffrou and ()
has limi zero alonff every curve erminainff a (a eomlemen
of ). Pu =[() G(), where Q() is he

1 zset of point z of R such that dist (z, F)>-[ on D, and let ;:.+

..... +(z)be a harmonic function in R,+- [(R+-R) J} such that ’
=0 on R+ J and ’ 4 (R+ R)+,+(z)-I on R
Then it is clear :(z)-lim z’,,..,+(z) is super-harmonic and ,’(z)

lim ;: (z) has limit 0 on aFg and moreover (F)-’(z)>O
Thus ,(z)-0, because .(z) has the angular limit 0 almost every-

where on ]-1. Hence we can easily construct a super-harmonic
unction w(z) such that w(z)- along every curve tending to the

2) This theorem is proved under a little weaker condition. See, M. Ohtsuka:
On covering surfaces over an abstract Riemann surface, Nagoya Math. Journ., 4,
109-118 (1952).

3) See 5).
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boundary in ] J. Then S(z) =Min 1, (z)- oo(F) + w(z) has the
I,>O

limit 1 along every curve determining an A.B.P. Hence (R,(R,R*))
(R, I(R, _R_*))-(F). This is absurd, therefore

(R, i(R, R*)) (R, (R, _R*)).
On the other hand t(R, (R, R*))#(R, ?/(R, R__*)), since every v(z)
on R can be considered on R.

Corollary. If R is a Riemann surface of finite connectivity and
R is hyperbolic, t(R, I(R, R*))-t(R, I(R, R__*)).

Since R is a metric space, R+(R, R*) is also a metric space.
Let l be a continuous curve in U such that whose projection L
on R converges to a point o (R, R__*) with respect to the metric
of R. Then the projection __L o L on __R converges to a point P0 e =R_*.
If Poe R__, the composed function z=z()’R-R has an angular limit

Po. It follows that l tends to a point $o. Therefore _z() has the
angular limit Po. Hence z($)’R-R+ I(R, R*) has the angular limit

P0. We denote by A the set on ]$]=1 such that at least one l
above-mentioned terminates. Let E be a set on 1I=1 where the
Green’s function of R has an angular limit 0. If l is a Stolz’s
path terminating at $o e AOE, then the projection L of l on R
tends to the boundary of R and has the projection __L on _R which
tends to a point p e R. Thus l determines an A.B.P. of I(R, R).
Hence

Ai’ (A;
Let be a closed subset of /(R, __R_*) and let F be the set on [$ ]-1
such that at least one curve determining an A.B.P. of terminates.
We call F the hyper image ot . Put

F’ 8 II , II (distance (f(r,/,(O).)-
where r./,(0) is a segment of the radius such that 1 1 [ $ l< 1 1

m n
arg$=0. Hence F is measurable. We call F’ the image of .
Then

(F’ (A)FC[B.+(A( F’)} and

where B is the set where at least one curve determining an A.B.P.
of R whose projection lies on B of R terminates.

Let (R, ) be the lower envelope of super-harmonic functions
v(z) such that 0v(z)l, limv(z)-I along every curve determining
an A.B.P. of R lying on and let (R, (R, B)), t(R, I(R, B))

4} See, the proof of theorem 2.2..-.A is a hyper image of g(R, *).
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be the lower envelopes of v(R) and vz(R_") such that lim v(R)l,
lira v(R_)--I along every curve determining an A.B.P. of R and
R_ lying on B o R_. Since at every point of F’QA,limv(z)l
along radial segments, o(U, F’ ( A)(R, F(A)t(R, )(R,
(R, B) +(R, A F’). Since (R, (R, B)) ,(_ (, B))-- 0,
mesA A"] 0 and since (U,F’A)>(R",AF’), we have
(U, F’)-(U, F A)-(R, )-(U, F"), because mes ]E,I-2.

Theorem 2.3. Let R be a positive boundary Riemnn surface
and let the universal covering surface of the projection of R over

be hyperbolic, ff (R, (R, *))-(R, }i(R, *)), then

z(R, )--,(R, )-o(Y, F’)

for every clo.ed subset of (R, *).
Proof. Put (R, *) in the place of in the above equality

and regard that -z($) has angular limits on at a set on l$ [-1
where at least one curve determining an A.B.P. of (R,) terminates.
Then we have (R, (R,*))(R%?I(R,))-(U,A). We denote by

all points z of R+ ?I(R, *) such that z has a distance from .
n

Then = , and the image F of on [ I=l is measurable and

z-z($) has angular limits on R at F. Let {R} be an exhaustion o R
with compact relative boundaries {DRy} and let . be the relative
boundary of . Let o.,+(z)(n,m,i=l, 2,...) be the harmonic
function in R+-(F (R+-R)) such that :,.,+(z)= 1 on {D
(R+-R)}+( DRy) and 5.+(z)=0 on DR+-,. Then (z)
=lim#,,,,+(z) is super-harmonic in R and lim2(z)(R, )or
every n. Assume, (R, ) (R, ). Then there exist a number
n and a closed subset E in A C for sufficiently small number
such that (R, ) has angular limits larger than $ and z=z()

converges uniformly inside an angular domain" [arg]-e’ ]<--2
(6’ >0) or every point d of E, because (U, A)-(R, I(R, *))
(R,) implies that (R,) has angular limits 0 almost every-
where on CA (complementary set of A). Let Dz(E6) be the domain
in U such that D(E) contains the endpart of the angular domain

]arg(1-e-$)]<- at every point e’ o E6. 0n the other hand
2

the universal covering surface R7 is mapped onto a simply connected
domain containing =0 such that RT-U. Let H be the ring

5) Map R of a null-boundary Riemann surface onto U "l 5 I<: 1 and let E the
image of the ideal boundary of R. Then rues E=0. See, M. Tuji- Some metrical
theorems on Fuchsian groups, Kodai Math. Sem. Rep., Nos. 4-5, 27-44 (1950).
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domain such that r<l $I<1. Then there exists r such that z=z($)

has a distance _!__ from ., where $ e HD(E6), because z=z()
2n

has an angular limits of A.B.P.’s of R which have a distance 1_
n

from . Let D[(E,) be a component o2 H,. ( D(E) which has a closed
subset o2 positive measure of E and let o($) be a harmonic 2unction
such that o()-1 on the boundary o2 D(E6) except one on 151--1
and o()-0 on I.]-1. Consider (z) in U, we see easily that
,(z)o($) or every m, because the image o2 does never 2all
in D[(E). Since the boundary o2 D(E) is rectifiable, there exists
a set of positive measure on St-1 where o($)-0. Hence t(R, )

lim (z) o(), whence #(R, ) has an angular limit 0 almost

everywhere on E. This is a contradiction. Thus we have
(R, )-(R, ).

Let R be the projection of R on R. If Rt of R is parabolic
( cannot be mapped onto a unit-circle eonormally) we remove
a finite number o points p, p.,..., p (ff R is closed and its genus
is zero or one, then the number o2 points which are to be remove,
is three or one respectively) and remove all the points p (j= 1, 2,...)
lying on p from R. Denote the remaining surface by R and define

(R, [(R, R*)) and #(R, I(R, .R*)) similarly. In he 2ollowin we
assume that R has at ]east one A.B.P. M. Ohtsuka has proved
the ollowing:

t(R, I(R, R__*))-- t(R, (R, R*)) > #(R, (R, R__*)) > t(R I(R, R*)) and
ff R is a null-boundary Riemann

surface, (R, I(R, R*))--(R, I(R,
R*))=I and (R, I(R, *))-0.
He proposed he problem" does
here exist a case when the in-
equality holds? We show that
there are these cases,.

Example. Let B.,, B._ n
=1, 2,... be the system o2 closed
domains in lzi<l such that

Bn: 1-1-----<r---<1 1" 3r<0---<- (containing--)4n+3 4n+4 4 4 2

B_: 1--1 .rl- 1 _3>>_5 (containing )4n-- 4n+1 4 4 2

We can construct a holomorphic function f(z)" zl<l by

Runge’s theorem such that If(z)-1 i<_!_ in B and If(z) I< 1 in
n n
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B._. It is clear that f(z) is not bounded in z]<l. Since the
value w--=f(z)- is an exceptional point, there exists at least one
asymptotic path along which f(z) tends to o, when z converges to
the boundary of the unit-circle. Let 1 be an asymptotic path with
starting’ point Po where If(po) l--Mo. Then 1 is not contained in

(B+B_) for a number no and determines an A.B.P. lying

over w=. Let p be the first point where l passes zI-r, and
let l be the part of 1 between Po and p. Let v(z) be a continuous
super-harmonic function such that 0v(z)l and lim v(z)-l, when
z tends to z [--1 along 1. Then there exists r such that v(z)l-
on l-l for a given number . Consider the part l.-l,- l, then

l connects two circles [z -r and [z [--r (rr>l -"nno).
4n

Without loss of generality, we can suppose that 1 has a branch in
the let semi-circle. Let A, B, C, D, E and F be points shown in
the figure and let D, be the simply connected domain with boundary

AB+BC+CD+DEFA and let .(z) be the harmonic measure of BC
with respect to D. Then we see that v(z)(1-),(z) and v(0)
(1-)(0) (>0) for every n. We denote by U the unit-circle
and let v(U, z, ) be a continuous super-harmonic function such that
Ov(U,z, )1 and limv(U,z, )-1 along 1 every curve tending go

and let v(U, z, ) be their lower envelope. Since {v(U, z, )} is
contained in the class {v(z)}, we have .(U, z,) at 0.

We remove all points {z} where f(z) O, or 1 or 2 from U and

denote by Uthe remaining surface. Map U onto U: [$] < 1 conformally.

Let {} be the set of all A.B.P.’s of U whose projection lie on
w- and let E, be the hyper image of [}. Then E, is a
set of linear measure zero. Let v(U, {})and v(U, E,)be super-
harmonic function in U such that limv(U, {})-1 when z tends
go E,. Then

V(U, ),(U, {})(U, E,)=0, where (U,) and ,(U, [}) are
the lower envelopes of v(U, ) and v(U, {}).
Since is closed, we can conclude by Theorem 2.3 that

,(U, )-,(, ) ,(V) implies

We consider U as a Riemann surface R, then we have

,(R 8" )) ,(R, )).
Similarly, if we consider U as a Riemann surface R, then we have

,(R, > )).


