172. The Divergence of Interpolations. II

By Tetsujiro Kakehashi

(Comm. by K. Kunugi, m.J.A., Nov. 12, 1954)
Next we shall consider the function analytic interior to the circle C_{R} and with singularities of Y_{m} type on C_{R}. Such functions can be constructed by

$$
\begin{equation*}
f(z)=\varphi(z)+\sum_{k=1}^{N} \varphi_{k}(z) y_{m_{k}}\left(z ; a_{k}\right) ; a_{k}=R e^{\imath \alpha_{k}}, \tag{13}
\end{equation*}
$$

where $\varphi(z)$ and $\varphi_{k}(z)$ are functions single valued and analytic on and within the circle C_{R}, and a_{k} are points on C_{R} not necessarily distinct. For such functions, we have the following theorem.

Theorem 2. Let $P_{n}(z ; f)$ be partial sums of the power series of $f(z)$ represented by (13). Then

$$
\begin{equation*}
\varlimsup_{l i m_{n \rightarrow \infty}}\left|n^{p}\left(\frac{R}{z}\right)^{n} P_{n}(z ; f)\right|>0 \quad \text { for } \quad|z|>R, \tag{14}
\end{equation*}
$$

where p is the minimal real part of m_{k} in (13). Accordingly, $P_{n}(z ; f)$ diverges at every point exterior to the circle C_{R} as n tends to infinity.

In the proof of this theorem, it is convenient to have the following lemma.

Lemma 3. Let $A_{k} ; k=1,2, \ldots, N$ be a given set of complex numbers not all equal to zeros. Let $\alpha_{k} ; k=1,2, \ldots, N$ be mutually distinct angles between zero and 2π, and $q_{k} ; k=1,2, \ldots, N$ be a set of real numbers. Then we have

$$
\begin{equation*}
\widetilde{\lim }_{n \rightarrow \infty}\left|\sum_{k=1}^{N} A_{k} e^{-i c\left(\imath_{k} \log n+n \alpha_{k}\right)}\right|>0 . \tag{15}
\end{equation*}
$$

For a real number q not equal to zero, the relation

$$
e^{-i(q \log n+n a)}=\frac{1}{\Gamma(i q)} \int_{0}^{\infty} e^{-n(t+i a)} t^{t q-1} d t ; n=1,2, \ldots
$$

can be verified by the well-known formula

$$
\Gamma(i q)=\int_{0}^{\infty} e^{-x} x^{i q-1} d x
$$

Then we have for α not equal to zero

$$
\begin{aligned}
& \frac{1}{n} \sum_{v=1}^{n} e^{-i(g \log \nu+\nu \alpha)}=\frac{1}{n \Gamma(i q)} \int_{0}^{\infty} \frac{1-e^{-n(t+i \alpha)}}{1-e^{-(t+i \alpha)}} e^{-(t+i \alpha)} t^{i q-1} d t \\
& =\frac{1}{\Gamma(i q+1)}\left\{\frac{1}{n} \int_{0}^{\infty} \frac{e^{-2(t+i \alpha)}\left(1-e^{-n(t+i \alpha)}\right)}{\left[1-e^{-(t+i \alpha)}\right]^{2} d t}\right. \\
& \left.\quad-\int_{0}^{\infty} \frac{e^{-(n+1)(t-i \alpha)}}{1-e^{-(t+i \alpha)}} t^{i \alpha} d t+\frac{1}{n} \int_{0}^{\infty} \frac{e^{-(t+i \alpha)}\left(1-e^{-n(t+i \alpha)}\right)}{1-e^{-(t+i \alpha)}} t^{i q} d t\right\}
\end{aligned}
$$

by partial integrations. The last side members converge respective ly to zeros as $n \rightarrow \infty$, as the minimal absolute value of $1-e^{-(t+i a)}$ is positive for α not equal to zero. Thus we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{\nu=1}^{n} e^{-i(g \log \nu+\nu \alpha)}=0 \tag{16}
\end{equation*}
$$

And we can verify that this equality is valid even for q equal to zero.

Now we shall prove the lemma. If we assume the equation

$$
\lim _{n \rightarrow \infty} \sum_{b=1}^{N} A_{k} e^{-i\left(\sigma_{k} \log n+n \alpha k\right)}=0,
$$

we have, for A_{1} which can be assumed not to be zero,

$$
\lim _{n \rightarrow \infty}\left[A_{1}+\sum_{k=2}^{N} A_{k} e^{-\zeta\left\{\left(q_{k}-q_{1}\right) \log n+n\left\{\left(\alpha_{k}-\alpha_{1}\right)\right\}\right.}\right]=0,
$$

while the arithmetic means

$$
\frac{1}{n} \sum_{v=0}^{n-1}\left[A_{1}+\sum_{k=2}^{N} A_{k} e^{-t\left\{\left\{q_{k}-q_{1}\right) \log v+\nu\left(\alpha_{k}-\alpha_{1}\right)\right\}}\right]
$$

tend to A_{1} as $n \rightarrow \infty$ by (16). This contradicts the assumption.
Thus the lemma has been proved.
Now we shall prove Theorem 2. Let p be the minimum of the real part of m_{k}. From Theorem 1, we have, for z exterior to C_{R},

$$
\begin{aligned}
& n^{P}\left(\frac{R}{z}\right)^{n} P_{n}(z ; f)= n^{P}\left(\frac{R}{z}\right)^{n}\left[\frac{1}{2 \pi i} \int_{c_{R}} \frac{t^{n+1}-z^{n+1}}{t^{n+1}} \frac{\varphi(t)}{t-z} d t\right. \\
&\left.+\sum_{k=1}^{N} Y_{m_{k}}\left(\frac{t^{n+1}-z^{n+1}}{t^{n+1}} \frac{\varphi_{k}(t)}{t-z} ; a\right)\right] \\
& \sim \sum_{k=1}^{N} A_{k} n^{p-m_{k}}\left(\frac{R}{a_{k}}\right)^{n} \\
&= \sum_{k=1}^{N} A_{k} e^{-i\left(\tau_{k} \log _{n+n a}\right)} n^{p-p_{k}} \\
& \sim \sum_{k=1}^{N} A_{k}^{\prime} e^{-i\left(\sigma_{k} \log n+n \alpha_{k}\right)},
\end{aligned}
$$

where p_{k} and q_{k} are respectively the real and imaginal part of m_{k}, and A_{k}^{\prime} are equal respectively to A_{k}^{\prime} if $p=p_{k}$ and $A_{k}^{\prime}=0$ if $p<p_{k}$.

Now the relation (14) follows at once from Lemma 3. The theorem has been established.
3. In this paragraph, we consider the divergence of polynomials which interpolate to such a function considered in the previous paragraph.

Let $f(z)$ be a function single valued and analytic whithin the circle $C_{R} ;|z|=R>1$ and with singularities of Y_{m} type on C_{R}. That is, $f(z)$ is represented by (13). Let be given a set of points

$$
\left\{\begin{array}{l}
z_{1}^{(0)} \tag{17}\\
z_{1}^{(1)}, z_{2}^{(1)} \\
z_{1}^{(2)}, z_{2}^{(2)}, z_{3}^{(2)} \\
\cdots \cdots \cdots \\
z_{1}^{(n)}, z_{2}^{(n)}, z_{3}^{(n)}, \ldots \ldots z_{n+1}^{(n)} \\
\cdots \ldots \ldots
\end{array}\right.
$$

which do not lie exterior to the unit circle $C ;|z|=1$. The sequence of polynomials $S_{n}(z ; f)$ of respective degrees n found by interpolation to $f(z)$ in the points $z_{1}^{(n)}, z_{2}^{(n)}, \ldots, z_{n+1}^{(n)}$ is defined by

$$
\left\{\begin{align*}
S_{n}(z ; f)= & \frac{1}{2 \pi i} \int_{C_{R}} \frac{W_{n+1}(t)-W_{n+1}(z)}{W_{n+1}(t)} \frac{\varphi(t)}{t-z} d t \tag{18}\\
& +\sum_{k=1}^{N} Y_{m_{k}}\left(\frac{W_{n+1}(t)-W_{n+1}(z)}{W_{n+1}(t)} \frac{\varphi_{k}(t)}{t-z} d t ; c_{n}\right),
\end{align*}\right.
$$

where

$$
W_{n+1}(z)=\left(z-z_{1}^{(n)}\right)\left(z-z_{2}^{(n)}\right) \cdots\left(z-z_{n+1}^{(n)}\right) .
$$

Let the points (17) satisfy the condition that the sequence $W_{n}(z) / z^{n}$ converges to a function non-vanishing and analytic for z exterior to the unit circle. That is, for any real number r greater than unity,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{W_{n}(z)}{z^{n}}=\lambda(z) \neq 0 \quad \text { uniformly for } \quad|z| \geqq r>1 \tag{19}
\end{equation*}
$$

The sequence of polynomials $S_{n}(z ; f)$ which interpolate to $f(z)$ in all the zeros of $W_{n+1}(z)$ which satisfy the condition (19) has properties similar to those of the power series considered in paragraph 2. At first, we consider the following

Theorem 3. Let $W_{n}(z)$ be the sequence of polynomials of respective degrees n such that the sequence $W_{n}(z) / z^{n}$ converges to a function $\lambda(z)$ non-vanishing and analytic for z exterior to the unit circle $C ;|z|=1$, and uniformly on any finite closed set exterior to C. Let $\varphi(z)$ be a function single valued and analytic on and within the circle C_{R}. Then the sequence of polynomials $S_{n}\left(z ; \varphi y_{m}\right)$ of respective degrees n which interpolate to $\varphi(z) y_{m}(z ; a)$ in all the zeros $W_{n+1}(z)$ converges to $\varphi(z) y_{m}(z ; a)$ for z interior to C_{R}. The sequence $S_{n}\left(z ; \varphi y_{m}\right)$ diverges at every point exterior to C_{R}. Moreover, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{m}\left(\frac{a}{z}\right)^{n} S_{n}\left(z ; \varphi y_{n s}\right)=B \neq 0 . \tag{20}
\end{equation*}
$$

The first part of the theorem, that is the convergence of $S_{n}\left(z ; \varphi y_{m}\right)$ has been well known. (Cf. Walsh: Interpolations and Approximations, American Mathematical Society Colloquium Publications (1935).)

Now we shall prove the relation (20). By the method similar to the proof of Theorem 1, we have

$$
\begin{aligned}
& n^{m}\left(\frac{a}{z}\right)^{n+1} S_{n}\left(z ; \varphi y_{m}\right)=n^{m}\left(\frac{a}{z}\right)^{n+1} Y_{m}\left(\frac{W_{n+1}(t)-W_{n+1}(z)}{W_{n+1}(t)} \frac{\varphi(t)}{t-z} ; a\right) \\
& \sim-n^{m} a^{n+1} W_{n+1}(z) \\
& z^{n+1} \\
& \sim-Y_{m}\left(\frac{1}{W_{n+1}(t)} \frac{\varphi(t)}{t-z} ; a\right) \\
& \quad \quad a^{n+1} \lambda(z) Y_{m}\left(t^{-(n+1)} \frac{\varphi(t)}{\lambda(t)(t-z)} ; a\right) \\
& \quad+n^{m} a^{n+1} \lambda(z) Y_{m}\left[t^{-(n+1)}\left(\frac{1}{\lambda(t)}-\frac{t^{n+1}}{W_{n+1}(t)}\right) \frac{\varphi(t)}{t-z} ; a\right] .
\end{aligned}
$$

We can verify that the last term of the last members tends to zero as $n \rightarrow \infty$ by the method used in the proof of Lemma 2, that is by partial integrations as

$$
\frac{d^{j}}{d t^{j}}\left\{\frac{1}{\lambda(t)}-\frac{t^{n+1}}{W_{n+1}(t)}\right\} ; \quad j=1,2, \ldots, p
$$

converge respectively to zeros uniformly on C_{R} as n tends to infinity. And the first term of the last side members tends to

$$
\lambda(z) a^{m} \frac{\varphi(a)}{\lambda(a)(a-z)}=B \neq 0 \quad \text { for } \quad|z|>R .
$$

Thus the theorem has been established.
Next we shall consider the behavior of $S_{n}(z ; f)$ which interpolate to $f(z)$ defined by (13) in all the zeros of $W_{n+1}(z)$.

Theorem 4. Let $f(z)$ be the function represented by (13). Let $W_{n}(z)$ be the sequence of polynomials of respective degrees n such as the sequence $W_{n}(z) / z^{n}$ converges to a function $\lambda(z)$ non-vanishing and analytic for z exterior to the unit circle C, and uniformly on any finite closed set exterior to C. Then the sequence of polynomials $S_{n}(z ; f)$ of respective degrees n which interpolate to $f(z)$ in all the zeros of $W_{n+1}(z)$ converges to $f(z)$ for z interior to C_{R}. The sequence $S_{n}(z ; f)$ diverges at every point exterior to C_{R}. Moreover, we have

$$
\begin{equation*}
\overline{\lim }_{n \rightarrow \infty}\left|n^{p}\left(\frac{R}{z}\right)^{n} S_{n}(z ; f)\right|>0 ; \quad|z|>R>1 \tag{21}
\end{equation*}
$$

where p is the minimal real part of m_{k} in (13).
The validity of the relation (21) is sufficient to prove the theorem. Let p be the minimum of the real part of m_{k} in (13). We have, from (18) and Theorem 3 by the method similar to the proof of Theorem 2,

$$
\begin{aligned}
& n^{p}\left(\frac{R}{z}\right)^{n+1} S_{n}(z ; f)=n^{p}\left(\frac{R}{z}\right)^{n+1} \frac{1}{2 \pi i} \int_{c_{R}} \frac{W_{n+1}(t)-W_{n+1}(z)}{W_{n+1}(t)} \frac{\varphi(t)}{t-z} d t \\
&+n^{p}\left(\frac{R}{z}\right)^{n+1} \sum_{k=1}^{N} Y_{m_{k}}\left(\frac{W_{n+1}(t)-W_{n+1}(z)}{W_{n+1}(t)} \frac{\varphi_{k}(t)}{t-z} ; a_{k}\right) \\
& \sim-n^{p} R^{n+1} \lambda(z) \sum_{k=1}^{N}\left(t^{-(n+1)} \frac{\varphi_{k}(t)}{\lambda(t)(t-z)} ; a_{k}\right) \\
& \sim \sum_{k=1}^{N} B_{k} n^{p-m_{k}}\left(\frac{R}{a_{k}}\right)^{n} \\
&=\sum_{k=1}^{N} B_{k} e^{-i\left(C_{k} \log n+n \alpha_{k}\right)} n^{p-p_{k}} \\
& \sim \sum_{k=1}^{N} B_{k}^{\prime} e^{-i\left(c_{k} \log n+n c_{k}\right)},
\end{aligned}
$$

where p_{k} and q_{k} are respectively the real and imaginal part of m_{k} and B_{k}^{\prime} are equal respectively to B_{k} if $p=p_{k}$, and $B_{k}^{\prime}=0$ if $p<p_{k}$.

Now the relation (21) follows at once by Lemma 2. Thus the theorem has been established.

