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166. The Minimum Area of Convex Curves ]or Given
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By Denzaburo HEMMI
Department of Mathematics, Yamagata University, Japan

(Comm. by Z. SUETUNA, M.J.A., NOV. 12, 1954)

1. Among the quantities concerning ovals the following are
of fundamental importance: the area F, the perimeter L, the di-
ameter D and the thickness /. Various relations between these
quantities have been investigated by Kubota and others. However
some of them, so-called minimum problems of a certain kind, remain
unsolved. Already we, Kubota and I, solved two problems of them
as follows:

F 3J{I//D--A+/(sin-1/ r)} -I//3_D for D:>/:>= V’ 3 D/2,
D 3 2

2F ::> AL--V’-3 A sec 0 for rA L 21//3 A,

where 0 is the root of tan 0-0-(L- r)/(6/) in the interval
00/6.

Before printing our results similar studies2 were published in
Germany and U.S.A. About that time Prof. T. Kubota died who
often gave me kind advices and was my joint worker. The publi-
cation of our paper was delayed as we could not solve the (L, D)
problem: the problem of the minimum figures for F when D and L
are so given that 3D < L < rD. In the two papers above-mentioned,
the former did not refer to the (L, D) problem and the latter, M.
Sholander’s paper, gave the partial results for this problem and
concluded as follows: "It is now natural to conjecture that the
minimum figure is a triarc RST in the form of polygon inscribed in
the Reuleaux triangle RST. Assuming the truth of conjecture, a
much more accurate description of the figure can be given. It
remains doubtful, however, whether for 3D < L < rD a simple
inequality giving lower bounds for F in terms of L and D exists
which is better than Kubota’s inequality". On the other hand I had

1) T. Kubota and D. Hemmi: Some problems of minima concerning ovals, J. Math.
Soc. Japan, which was read at the annual meeting of the Math. Soc. of Japan held
in June 2, 1951.

2) D. Ohmann: Extremalprobleme ffir konvexe Bereiche der euklidischen Ebene,
Math. Z., ;5, 347-352 (1952).

3) M. Sholander: On certain minimum problems in the theory of convex curves,
Trans. Amer. Math. Soc., 73, 139-173 (1952).
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already got a lower bound for F better than Kubota’s inequality in
the following form-2F :> D [r/20 sin 20 + sin (20 -/20)- V’ 3 ( DL cos O-1/-D),
where [ is Gauss’ notation and 0 is the root of [r/20] sin 0+cos
([r/20]O)--L/2D in the interval 0 0 r/6. But this inequality is
not sharp enough, for the equality does not occur unless L=6nD sin
(r/6n), n--1, 2, 3,

Recently I solved the (L, D) problem; and I shall summarize
the result in this note.

2. If the polar tangential equation of an oval is given by
p=p(t), the central oval p-p(0)+p(0+r) is called the breadth curve
of @. Let o be a breadth curve of (2 whose centre is O and
PPPP,PP be a convex polygon inscribed in o. When the polygon
is symmetric with respect to O and P.P-1/2PP,, then PPPP,PP
will be called the base hexagon.

Let (i= 1, 2) be the translation of o by OP, (i=1, 2), then the
convex hull of the part common to three convex domains with
boundary 0, and will be called the asymmetric oval deter-
mined by PPPP,P.P and o. The asymmetric oval is the same
oval called "allgeraeines Reuleauxdreieck" by Ohmann or triarc by
Sholander.

The asymmetric oval is called "to be flat" if the breadth curve
has at least one pair of rectilinear parts which coincide with sides
of a base hexagon. The flatness of ovals was discussed by Sholander
first.

The oval is called "to be (L, D)-deformable" if it is deformable
into another oval which has the same perimeter and diameter and
less area. By Blaschke’s selection theorem, we see there exists a
solution of the (L, D)problem and therefore we get the solution by
eliminating all (L, D)-deformable ovals. From a lemma ) on oval
we see that the solution of the (L, D) problem is a non-asymmetric
oval. Furthermore Sholander proved: No polygon is a solution of
the (L, D) problem. Thus we can state that no non-asymmetric
polygon is a solution o the (L, D) problem. Moreover we can proe
that no flat polygon is a solution o the (L, D) problem when
3D < L < rD. Besides any asymmetric polygon is (L, D)-deormable
into one of the ollowing three kinds of ovals;

4) D. Hemmi: On the minimum area of closed convex domains with an assigned
breadth, Bull. Yamagata Univ., 2, 157-170 (1953).

5) Let be a breadth curve and (R) be a hexagon of maximal area among all
base hexagons inscribed in , then the asymmetric oval determined by (R) and is of
minimum area among all ovals with the breadth assigned by . Loc. cit. 1). Similar
but not the same proofs are found in 2) 3), other two proofs in 4).
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1. asymmetric polygon, non-flat, whose base hexagon is a
regular hexagon of sides D,

2. flat polygon,
3. non-asymmetric polygon.

Thus we get a theorem which implies Sholander’s conjecture: when
3D < L < rD, solutions of the (L, D) problem are non-flat asymmetric
polygons, whose base hexagons are regular of sides D.6

Furthermore, by Favard’s result, we see our problem can be
2ormulated analytically as ollows:

D[--262-] sin 2x +sin 2(’-6- [rxl) Ir.y (r_6_ [’yl)x + | sin 2y + sin 2 y

(1)
+ Izzl sin 2z +sin 2(--z_-2\66z/sin---minimum3.

under the conditions

2D sin x+ sin + L] sin y + sin y

(2)
+[ sinz+sin( z)}
0<x<-, 0<y< and 0

6 6’
where [ J is Gauss’ notation and the constants D and L are given
so that 3D < L < rD.

Suppose z be fixed. After some elementary calculations for
maxima and minima, we see the necessary conditions for the mini-
mum problem (1) may be expressible as follows:

(I) in the case when both ./6x and -/6y are not integers,

(3) cosx+eos V--x ,--csy+cs ---y
and

sin x--I] sin(-6 [-] ) sin Y-- [yl sin (--YI.I )

(II) in the case when one of r/6x and -/6y is not integer, for
example, r/6x integer and r/6y=integer,

--x r <:l+cosy;2 cos y < cos x + cos -6
(III) in the case when both -/6x and -/6y are integer,

6) D. Hemmi: On a minimum problem in the theory of ovals, Bull. Yamagata
Univ., 3, 1-11 (1953).
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5 1 +cos x--2 cos y 0

and
5 1 + cos y-2 cos x 0.

The cases (II) and (III) are minimal conditions for angular points of
the unction F(x) defined by the parametric equations

x- sin0+sin -One of the difficulties of our problem is that the function F(x)
has many convex parts, concave parts and angular points which
handled together and this gives rise to the existence of numerous
minimal points. Besides the variation is so small that the evalua-
tion seems hard, and i L approaches D, then extreme values
become much more complicated. I pass through these difficulties
by the following lemmas, v)

We denote by a,, or any positive integer n, the value /(6n),
by b, or n 2, the root of sin x-nsin(a-nx) in the interval
(a+, a), by c, or any integer n3, the root of cos x + cos
(a-nx)=l+cosa in the interval (a,+, b)and by c* the root of
cos x + cos (a 2x)- 2 cos a in the interval (b, a).

Lemma 1. Let n 2, cos x + cos (a- nx)- cos y+ cos (a- ny) where
x and y satisfy c,<x<b,<y<a, for n3 or a<x<b<y<c*
for n=2. Then there holds

sin x-n sin (a-nx) + sin y-n sin (a-ny) < O.
cos (a- nx) cos x cos (a- ny)- cos y

Lemma 2. Let n 3, (n 1) (a- Z) B < n(a-Z) and 0 < a < a.
Then there exists such that n sin a+ (n + 1) sin B=n sin (n + 1) B/n + n
sin + sin n(a-- ) and that n sin 2a + (n + 1) sin 2B >n sin 2 (n + 1)B/n + n
sin 2+ sin 2n (a-) in the interval na/(n + 1) < < a.

Lemma 3. Let m be 1 or 2, n be an integer 2 and f(x), g(y)
and h(y) be functions as follows:

f(x)-(m + 1)In sin x + sin (a-nx)} for b, x a,

mn sin a+ n sin y + sin (a ny) for a,+ y c
g(Y)-tm{nsiny+sin(a-ny)}+(n+l)sina+ for bya

mn sin 2a, + n sin 2y+ sin 2(a-ny) for a,+ y c
h(Y)-[m[nsin2y+sin2(a-ny)} +(n+l)sin 2a.+ for b, y a

where the first branches of g(y) and h(y) in the interval a,+ y c,
are to be considered only in the case n 3 and vanish in the case

7) D. Hemmi" The minimum area of convex curves for given perimeter and

diameter, ]ull. Yamagata Univ., 3, 55-76 (1954).
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n--2. Then the simultaneous equations f(x)=g(y), f(2x)-h(y) have a
pair of solution X-Xo, Y-Yo. If f(x)-g(y) and f(x) is less (greater)
than f(Xo), then f(2x) is less (greater) than h(y).

Lemma 4. In Lemma 3, Yo satisfies either a,+ < Yo < c, for n 4,
or b < Yo < a for n-2, 3.

By these lemmas, the (L, D) problem is now solved or the case
3D < L < rD. The result can be divided in the three cases"

the case 3D < L 12D sin
12’

r n--2 or 3,2 ) the case 6nD sin
6n

< L 6(n + 1)D sin
6(n + 1)

(3) the case 6nDsin <L6(n+l)Dsin r n is an
6n 6(n+ 1)

integer 4. Further, denoting by a,, B., and k., the value of
x0, Yo and f(Xo) in Lemma 3 respectively, the case (2) is subdivided
in

(2,1) 6nD sin < L 2Dk, 2,
6n

(2,2) 2Dk, < L 2(n + 1)D sin + 2Dk, ,
6(n+1)

(2,3) 2(n + 1)D sin----- + 2Dk, < L 6(n + 1)D sin

and the case (3) is subdivided in
6(n+ 1)’

(3,1)

(3,2)

(3,3)

(3,4)

(3,5)

6nD sin --- L 2Dk,,
6n

Dk,, < L D sin + ( + 1) sin
6( + 1)

D{6 sin" +(+ 1)sin}<L<2D{ sin K +, },6n 6(n + 1) 6n

2D{nsin +k,}<L2D{n sin+2(n+l)sin .}6n 6n 6(n + 1)

2D In sin -+ 2(n + 1) sin <L6D(n + 1)sin
6n 6(n + 1) 6(n + 1)

In the following the inequality giving minimum F in each case
can be expressed as (i), in which 0 is determined by the equation (ii).

The case (1).

(i) 2F 3D2Isin. 20+ sin 2(--0)}- V’ 3 D2;

(ii) L=6DisinS+sin(--8)[; a > a..
The cases (2,1) and (3,1).

(i) 2F3D sin20+sin2 -n0 ---D;
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The case (2,2).

(ii)

+ D(n + 1) sin " I/-D;
3(n + 1)

L-4D sin e + sin -nt + 2D(n + 1) sin
6(n + 1)’

The case (2,3).
( 2F:>D nsin20+sin2 -nO +2(n+l)Dsin3(n + 1)

{ ( -nO)} + 4(n + 1)D sin rii L=2D n sin + sin 6-- 6(n + 1)’

The case (3,2).

(i)

(ii)

2I’ DIn sin 20 +sin 2 (--n0)l + 2nD sin -1/3 D"
3n

L-2D{n sin 0 +sin( -nO)} +4nD sin r

The case (3,3).

(i) 2F2D sin 20+sin2 -n0 +(n+l)Dsin3(n+l)
( ii L--4D sin + sin -nO + 2(n + 1)D sin

6(n + 1)’

The case (3,4).

( ) 2F D n sin 2+ sin 2 --n0

(ii)

+nD sin --- + (n + 1)D sin
3n

L-2D{n sin O + sin (--nO)}
3(n+l)

+ 2nD sin " + 2(n + 1)D sin--
6n

fl., > O a.+.
The case (3,5).
( ) 2F D n sin 20 + sin 2 -6--na

6(n + 1)’

(ii)

+ 2(n + 1)D sin " -V’-3 D;
3(n + 1)

L-2D n sin 0 + sin -6-- n0 + 4(n + 1)D sin
6(n + 1)’

a :> 0 > an+ l.


