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199. Groups of Isometries of Pseudo.Hermitian Spaces. I

By Shigeru ISHIHARA
Tokyo Metropolitan University

(Comm. by K. KUNUGI, M.J.A., Dec. 13, 1954)

Recently, Prof. K. Yano [6 has proved beautiful theorems
about groups of isometries of n-dimensional Riemannian spaces. We
shall study groups of isometries o2 a pseudo-Hermitian space, by
an analogous method.

1. Preliminary. Let M be a pseudo-Hermitian space of 2n
dimensions o class C. Then there exists such a ensor field q,. o
type (1,1) that

oo , gacP c,o g,
where g is the metric tensor of the space M, and qj and g. are
o class C. I2 we put

then o is a skew-symmetric tensor by virtue of the relation o=-.. When the tensor is covariant constant, the space M is
pseudo-Kihlerian.

Let G be a group of isometries of M onto itself and o be
invariant by G. For brevity, we call G a group of Hermitian
isometries. If the group G is transitive on M, he space M is
called a homogeneous pseudo-Hermitian space by definition. Further-
more, if the Riemannian metric g of the homogeneous pseudo-
Hermitian space M is pseudo-Kahlerian, then M is called a homo-
geneous pseudo-Kiihlerian space.

Let G be a group of Hermitian isometries of a pseudo-Hermitian
space M and H the subgroup of G, each transformation of which.
fixes a given point O of M. That is to say, H is the group of
isotropy at the point O e M. Then the subgroup H is isomorphic to
a subgroup H of he unitary group U(n) in n complex variables
and H operates on the tangent space of M at the point O in the
same manner as the real representation of H which operates on the
2n-dimensional real vector space. Throughout this paper, we assume
that the group G is always effective on M, and hat the group G
and the space M are both connected. Moreover, for brevity, it is
supposed that the subgroup H of isotropy is connected.

2. Subgroups of U(n) of dimension r n-2n+ 2. The follow-
ing theorem is proved by using the theorems due to D. Montgomery
and H. Samelson [3.
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THEOREM 1. Let G be a proper subgroup of the unitary group
U(n) in n complex variables. In cases n2 and n4, if
dim Gn-2n+2, the group G. is conjugate to SU(n) or P,. In
case n-4, it is conjugate to one of the following groups:

SU(4), P, A Zp(2), Sp(2).
Here, the groups SU(n), Sp(2), P and A are as ollows: SU(n)

is the unimodular unitary group in n complex variables. Sp(n) is
the linear symplectic group in n quaternic variables. P and zi
are respectively the groups composed of all n-matrices of the types

(0d A
0 ) and dI,

where is real, A e U(n-1) and I is the identity n-matrix.
It is easily seen that,

dim U(n)-n, dim SU(n)-n-1,
dim P--n-2n+ 2 and dim Sp(2)- 10.

3. Dimension of groups of Hermitian isometries. Let G be a
group of Hermitian isometries of a 2n-dimensional pseudo-Hermitian
space. Then it is easily seen that G is o dimension r n+ 2n.
The subgroup H of isotropy at a point O eM is of dimension
ro :> r-2n.

If r---dim G-n + 2n-1, then ro r- 2n-n-1. Hence H is,
by virtue of Theorem 1, isomorphic to U(n)or SU(n). Both of
the groups U(n) and SU(n) have their natural real representations
on the real vector space V o 2n dimensions, and their real rep-
resentations have the property of ree mobility on V’. Consequent-
ly, H have the property of ree mobility at the point O M. There-
ore, the given group G is transitive on M, since G and M are con-
nected.

Assume that the group G is of dimension r such that
n+2n-1 >r>n+2 (n3).

Then we have the ollowing relations:

ro :> r- 2n : n-2n+ 2.

Hence, if n 4, H is isomorphic to U(n) or SU(n)as a consequence
of Theorem 1, since n :> 3. Therefore, it ollows that the group
G has the property o free mobility at the point O of M. Con-
sequently, the group G is transitive on M. Thus we obtain the
relations

r ro+2n n+2n-1.
This inequality contradicts to the given range o r. Hence, when
n 3 and n 4, there exists no group of Hermitian isometries of
dimension r such that n + 2n- l > r > n + 2. When n-- 4 and
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23--n + 2n- 1 > r > n + 2-- 18, G is transitive and dim G= 19.
Finally, let G be of dimension r n+2. Then we have

ror-2n-n-2n+2. In case ro>n-2n+2, G is transitive on
M by the same arguments as above, 2or n > 2. Hence r-to-2
>n + 2 and this contradicts to the assumption that r-n+2.
Therefore, ro-n-2n+2 and, consequently, G is transitive on M by
means o the equality r-ro+2n.

Hence, summing up the results above obtained, we have the
2ollowing theorem.

THEOREM 2. Let G be a group of Hermitian isometries of a
2n-dimensional pseudo-Hermitian spce M. Then G is transitive on
M for n2, if the group G is of dimension rn+2. In case
n 3 and n : 4 there exists no group of Hermitian isometries of
dimension r such that

n+2n-1 r n+2.
In the ollowing 4, we find that the homogeneous pseudo-

Hermitian spaces in Theorem 2 are homogeneous Khlerian spaces
which are locally symmetric.

4. Determination of the space M. Let G/H be a homogeneous
pseudo-Hermitian space of 2n-dimensions and G be o the maximum
dimension n+2n. Then the subgroup H of isotropy is of dimen-
sion n and, consequently, H is isomorphic to U(n). H being compact,
the Lie algebra of G is decomposed into a direct sum as a vector
space in such a way that

.q- +), [, . ,
where /)is the subalgebra o .q corresponding to the subgroup H.
That is to say, G/H is a reduetive homogeneous space [4. The
suba]gebra :) has a decomposition such that )-h + ) and h, )-- {0},
where /). is isomorphic to the Lie algebra of SU(n) and dim

Extending the base field of .q to the field C of complex numbers,
we have a Lie algebra over C. Let m, )7 and I); be the sub-
algebras of corresponding respectively to m, ), and ). Then there
exists a decomposition of the veetor space m such that ,n--m,
dim m--dim m,--n and, moreover,

[U, X=X for X e m,
[U, X=-X for X i,

where U is a suitable element of ). Therefore, the following re-
lations are easily obtained:

[U; IX, Y-2[X, Y. for X, Y e m,
[U, IX, Y}---2[X, Y for X, Ye
[U, IX, Y-{0} for Xm, Ym.
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Hence, it follows immediately that

and Im,, m,] .
Thus it follows that Ira, m is contained in , that is, the homo-
geneous space G/H is locally symmetric

Since g and .’ are invariant by G, the tensor , is also invariant
by G. Since the homogeneous space G/H is locally symmetric, the
tensor , is covariant constant under the canonical connection of G/H,
which coincides with the Riemannian connection ([4, Theorem
15.4). Thus G/H is a homogeneous pseudo-Kahlerian space. On the
other hand, the group G has the property of free mobility on G/H.
Hence G/H is a Khlerian space with constant holomorphic sectional
curvature.

When G/H has positive holomorphic sectional curvature and G/H
is simply connected, G is isomorphic to SU(n+ 1) and G/H is a
complex projective space P(C, n) of n complex dimensions [1.

When G/H has negative holomorphic sectional curvature, G is
isomorphic to S(n+l) and G/H is homeomorphic to a Euclidean
space E of 2n dimensions, where S(n+ 1) is the connected com-
ponent of the identity in the group composed of all linear trans-
formations of n+l complex variables (z, z,..., z+)which leave
invariant the form

ZiZi + Z2Z+ + ZnZn-- Zn+lZn+ 1,

and whose determinants are equal to 1
When G/H is flat, the group G is isomorphic to the group

92n(n) of all unitary motions in a unitary space of n complex vari-
ables, and moreover G/H is homeomorphic to E [1 ]. Thus we have
the ollowing theorem.

THEOREM 3. Let G/H be a homogeneous pseudo-Hermitian space
of dimension 2n and dim G-n+ 2n. Then G/H is a homogeneous
Kghlerian spce with constant holomorphic sectional curvature K.
When K> 0 and G/H is simply connected, G is isomorphic to
SU(n + I) and G/H is P(C, n). When K< O, G is isomorphic to
S3(n + 1) and G/H is homeomorphic to E. When K=O, G is iso-
morphic to 9n(n) and G/H is homeomorphic to E.

Now, we suppose that G/H is a homogeneous pseudo-Hermitian
space and dim G=n+2n-1. Then the subgroup H of isotropy is
of dimension n-I and, consequently, H is isomorphic to SU(n).
Since SU(n)is compact, the homogeneous space G/H is reductive.
Then the Lie algebra g of G has a decomposition as ollows:

-m+, [, m] m,
where ) is the subalebra o g corresponding to the subgroup H.
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First, we have easily

Consequently, Era, m] is an invariant subspace with respect to ad ()):
--> . Since t) is simple, one of the following three cases occurs:

[, m]= {0}, [,, .]=, [., .]=.
In case where ira, ml-m, m is an ideal and it is easily seen

that the radical of g is {0}. Thus is semi-simple in this case [5].
Hence is an ideal of . On the other hand, since G is effective,
can not be an ideal. Thus the case where Ira, m]-m does not
occur. Therefore Ira, m] and consequently G/H is locally sym-
metric.

Since G/H is locally symmetric and G has the property of 2ree
mobility, G/H is a homogeneous pseudo-Kahlerian space with constant
holomorphic sectional curvature. Since the space G/H is locally
symmetric, by virtue of a theorem due to K. Nomizu ([4], Theorem
12.1), it is easily seen that the Lie algebra oi the restricted
holonomy group of G/H is isomorphic to ad (l)): m-m, where is
an ideal o . Then is a subalgebra of he Lie algebra of SU(n),
2or ad@): m-m is the real representation o2 D. Thus it 2ollows
that is trivial, since and G/H has constant holomrphic
sectional curvature. Therefore the given space G/H is flat. Hence
the group G is isomorphic to a subgroup S.(n) of n(n), where
S’.(n) is composed of all elements o )(n) whose rotation parts
belong to SU(n). Moreover, the space G/H is homeomorphic to
E’. Hence we have the 2ollowing theorem.

THEOREM 4. Let G/H be a homogeneous pseudo-Hermitian space

of dimension 2n and dim G=n+2n-1. Then G/H is fiat and G is
isomorphic to S(n).

Theorems 3 and 4 are proved, in [1, by another argument.
By virtue of a theorem in another paper [2, we have the

ollowing theorem.
THEOREM 5. Let G/H be a homogeneous pseudo-Hermitian space

of dimension 2n and dim G-n+2. Then, if n 4, G/H is locally
a product space of a homogeneous pseudo-Khlerian space G/H of
dimension 2 and another one G/H of dimension 2(n-1), both of
which have constant holomorphic sectional curvature. Moreover, the
two groups G and G G have the same structure.

It is easily seen that the space G/H in Theorem 5 is a homo-
geneous space which is locally symmetric.

We obtain at once the ollowing results by analogous arguments
as in Theorems 3 and 4. Let G/Hbe a homogeneous pseudo-Hermitian
space of dimension 2n. Then, if H is isomorphic to zl x Sp(n/2),
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G/H is fiat and is homeomorphic to E. Moreover, in this case, G
is isomorphic to a subgroup of (n) whose rotation part is
A Sp(n/2). If H is isomorphic to Sp(n/2), we have that G/H is the
same as above and G is isomorphic to a subgroup of (n) whose
rotation part is Sp(n/2).
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