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165. On Coverings and Continuous Functions of
Topological Spaces

By Jun-iti NAGATA
Department of Mathematics, Osaka City University
(Comm. by K. KUNUGI, M.J.A., Dec. 12, 1955)

The purpose of this paper is to study relations between con-
tinuous functions and locally finite coverings playing the important
role in recent topological developments. We shall establish a neces-
sary and sufficient condition for a normal space to be fully normal
and a condition for metrizability by wusing families of continuous
functions and shall generalize Hausdorfl’s extension theorem of
continuous function by using coverings.

Lemma. Let R be a topological space and V,={z|f.(x)>0}"
(a<7), where fla—r) are real valued functions on R. If B={V,]|
a<t}is a covering of R, and if ;fa(w) 18 continuous for every a<r,

then B has a locally finite refinement.
Proof. Let V,= {x | fulx) >-71—} and V,,= {w | ful@) >E—— %2-— <o
— 1} (n=2), then _I};:asz+1a_Vd (@=1,2...).

Define N,,=V,i;, Np=V5— " Viys(l<a<7), then ~ (N, |n=

p<la
1,2,...,a<7}=R. For x¢V, implies z ¢ V,,=N,, for some »n, and
xeV, e Vi(B<a), 1<a<r imply z ¢ V,, for some % and \“fﬁ(w) =<0.
Since fB is continuous, there exists a nbd (= nelghbourhood) Ulx)

of such that U(w),\(‘“ Virs)=¢. Hence xq; V,,HB, and hence
x € N,..

Next we shall show {N,|a<~+} is locally finite. Let V&:{xl

1 1 1 1 y 7 /
fa(x)> 2 22 M —'2n *2* §h+l}, then Vag Vn+1a- If X e Va, X ¢ VB
B<a=<q), then fﬁ(w) <*— o1 11 Since 7 f, is con-

on 9 gurt’ <

tinuous, there ex1sts a nbd V(x) of  such that V(r) ~ Vy;=¢(B<a).
Moreover, € € Vi and Vi~ Nyw =¢(a’ >a). Hence there exists
a nbd of z intersecting at most one of N, a<+). Therefore,
Fn=:/ﬁm is closed.

1) @, B, v denote ordinals in this lemma. In this note coverlng and refinement
mean open covering and open refinement respectively, and notations and terminologies
are chiefly due to J. W. Tukey: Convergence and uniformity in topology (1940). The
details of the content of this paper will be published in an another place.
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Define V,w——lwlfa(x)>~——_1_ L1 1 }

2 o8 on  g.om+i 4

1 _ 1 2 }
" — (X)> — = — e~ — 2 L gnd
V {xlf(w) 2 2? on  g.on+l n

M=V, Muo=Vie—" Vi (1<a<r), then

N.CM,.. N, =M, is obvious If a>2, x¢M,,, then since N,,
C Ve & Vi, @& Vi, implies ¢ N,,. Since w$ Vn+m 1mpl1es fs(x)

1 11 . |
é e —_2—”’_;2_"‘:{ and accordlngly o< de(U(x)) _S._— —_— *2—” -

——— q.e. U(ov),\(" my=¢ for some nbd U(x) of z, x¢ ~Vi.
Hence x ¢ ™~ 17 implies x e Vn+1pCMa > and x¢ N,,. Thus we get
NS M.

Now we denote W,,=M,,, Wm:-Mm——E;Fi(ng%.

Then W= {W,,In=1,2,...; a<s} is a locally finite refinement
of B. Firstly, we prove ~“{W,,ln=1,2,...;a<s}=R. Since
v‘Zb\—f,w‘:}if, for every x € R there exists n such that x ¢ N, for some
a<r and x¢ Ny(m<n, B<r). From N,,=M,, we get « ¢ M,, and
xé :C:Fi, and hence z ¢ W,,.

Since W<V is obvious, we show lastly that B is locally finite.
If xe N, F,, then Ny~W,;=¢(m >k, 8<7). Then we denote

1 1 1 :
{xlfa(w)> o T T 2.251?} for n<k and a<r If
eV, and v ¢ Vi(B<v =), then s1nce fﬁ(w) = — —"'%n—ﬁéﬁ’

there exists a nbd V(&) of x such that V(x),\V,;B~¢(,8< v). Hence
Ve)~My=¢ and V@)~W,,=¢(B<vy). Moreover, x¢ V). and
Vii~AM,=¢ (a'>v). Therefore there exists a nbd V,.(x) of x inter-

secting at most one of M,, for n <k. Hence the nbd ;\Vi(w),\Nm
of = intersects only finitely many W,.. 1

From this lemma combining the theorem of A.H. Stone® we
get easily the following theorems.

Theorem 1. In order that a Tyspace R s fully normal it s
necessary ond sufficient that for every open covering {V.|lae A},
there exists a family {f.la € A} of real valued functions on R such
that f(V5)=0, ;Afazl, ;;de is continuous for every BT A.

2) f(U)Y=k means f(x)sk (xU).
3) We denote by N¢ or C(IN) the complement of N.

4) A.H. Stone: Paracompactness and product spaces, Bull. Amer. Math. Soc.,
54 (1948).
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Theorem 2. In order that a completely regular space R is fully
normal it is necessary and suffictent that 7% f _ P s @ continuous

Sfunction on R, then for every e>0 there ewzsts {fula e A} such that
faS placA), |~ g~ 4f41 <e, and 7 fy is continuous for every
asA AE pEB

BC A.
By using this theorem we get the following proposition due to
K. Morita.®

Corollary 1. Let R be a normal space and R:SF;Z.” If F,

n=1
(n=1,2,...) are closed and fully normal subspaces, then R is fully
normal.

The following proposition due to K. Nagami® is a direct con-
sequence of the above lemma.

Corollary 2. Let R be a topological space and V,= (x| fu(x)>0}
n=1,2,...), where f, (n=1,2,...) are real valued continuous func-
tions on R. If B={V,|n=1,2,...} is a covering of R, then B has
a locally finite refinement.

Theorem 3. In order that a T-space R is metrizable it is neces-
sary and sufficient that there exists a family {f.|a e A} of real valued
continuous functions on R such that B;f;, and S fs are continuous

for every BCZ A, and such that for every nbd Ulx) of x there exists
Joc {fulac A}: fux)<e and f.(Ux))=¢c for some &>0.

Proof. We shall prove the sufficiency. Let V..={y|fuly)<r},
Wa=1{y| fuly)>r} and let U, (B)= (,\ wrr ~ W.,,) for BT A and

aEC(RB.
for rational numbers 7’ >r>0, Where we deﬁne VW—R for B=¢

and ~ i~ Ww =R for C(B)=¢. Moreover, we define 11,.,,_ {U,.(B)|BZA}.
og

Puttlng A(x):{a | fa(x)<-7:;L} for a definite x ¢ R, we get ~ fa(x)

Sflg " and consequently M(x)= yl ~ fa(y)<r’ S Va,,, N(w)—~

yl ~ fy)>r1<S ~ W,, Where M(x)—-R for A(x)—gb, N@)=R
AECCA)) aeClA(®))

for C(A(x))=¢. Since “~ f.(y) and ~ f.(y) are continuous, M(x) and

N(z) are open nbd of x such that M(z) ~ N(x) = U,.(A(x)). Hence
{M() ~ N(x) |z e R} =R<U,,.

Now we shall show that 2t has a locally finite refinement. Obviously

fa(w)<7" if and only if ,-\(r+r’—fagfm))<r Therefore, M(x),-\N(x)

5) K Morita: On spaces having the Weak topology with respect to closed
coverings. II, Proc. Japan Acad., 30 (1954).

6) K. Nagami: Baire sets, Borel sets and some typical semi-continuous functions,
Nagoya Math. Journ., 7 (1954).

7) F;) denotes the interior of F,.
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={yl ~ fuly) ~ @+r'—f(y)>7r}. To prove the continuity of
aE

AECCA(®)) Alax)

{ ~ )fa(y) ~@+r"—f£(¥)| Be B}=Fy) for an arbitrary B8C 24
aERB

aEC(B,
we denote by a the value of this function at a definite point y of

R. For an arbitrary ¢ >0 there exists a ¢ C(B): fa(y)<a+-;— or @ € B:

N~

7‘+7"—fa(y)<a+% for every Be®B. We denote by B’ the totality
of a such that a ¢ C(B), fu(¥)<a+ % and by B the totality of « such

that a ¢ B, r+7"—fa(y)<a+—§—. Sinee ~ f, is continuous, there exists
[1=9:14

a nbd U(y) of ¥ such that VR f(Uy)<a+e. Since ‘; (r+r"— fuy))
ae 74 ae 73

=r+r .5 fa(y) is continuous, there exists a nbd V(y) of y such

thatd;”(r +r'—f(Vy)))<a+e. Hence F(UY) ~ V() =<a+e. Since

Efc-,zmj"a(y) 23(7'+7"— F.(¥)) is obviously continuous, there exists a nbd

W(y) of y such that F(W())>a—e. Therefore from the above
lemma % has a locally finite refinement.

Lastly, let U(x) be a nbd of «, then there exists a positive
rational number 2’ such that ze V, .S U(r). Taking a rational
number r>0: f,(x)<r<r’, we get S(x, U,.)Z Ux). For if x ¢ U,.(B),
then since f.(x)<r and consequently x¢ W, it must be ac B.
Hence U,.(B)S V.,.< U(x), and hence S, U,.)< Ux).

Since {U,.|r, " are rational positive numbers} is enumerable,
we get the metrizability of R from the theorem due to Y. Smirnov
and the author.®

Conversely if R is metrizable, then {p(z, y)|x ¢ R} satisfies the
ccf)ndition of this theorem, where p (z, %) denotes a bounded distance
of R.

Theorem 4. Let R be a fully normal uniform space with the
uniform topology defined by the uniform coverings {M, |a’ e A’} and
S a uniform space with the uniform topology defined by the uniform
coverings {N,|a € A} such that |A'|=|A|=m. If f is a continuous
mapping defined on a closed set F' of R and having values in S, then
S can be tmbedded in a uniform space T having a uniform covering
system with the cardinal m such that f can be continuously extended
to R with values in T such that the extemsion is o homeomorphism of
R—F with T—S, and such that S is a closed sub-uniform space of
T. If f is a homeomorphism, then the extension is also a homeo-
morphism.
~ 8) Y. Smirnov: A necessary and sufficient condition for metrizability of topological
space, Doklady Akad. Nauk SSSR. N.S., 77 (1951). J. Nagata: On a necessary and

sufficient condition of metrizability, Journ. Inst. Polytech. Osaka City Univ., 1, No. 2
(1950).
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Proof. Obviously f~'(M)={f*(IN)IN e N,} =1, is a normal® open
covering of F for every « ¢ A. Hence we can choose U,(1=1,2,...)
from {U,|a e A} such that U, =U,, U, >WE>U,>1%>... . Putting
B={(R—-F)~ U|U e U,}, we get a covering B,,=T/, , M., of R such
that B \ F={V~F| FeB,} <Ug B,<M,. Since R is fully normal,
we can choose further a covering B, of R such that B, ,F<lU,,
B <B,,. We can obtain successively in the same way a sequence of
coverings of B M, >B, >Bk >B,,>B%>--- such that B, , F<l,,,
=1,2,...).

Now we define a sequence of coverings of B from the above
sequence by Pu= {Us, Bu}={NU, Bu), VA(BR—F)|Uell,, VeB,},
where N(U, B,;) denotes the open set ~ {VI|¢p=xV~FCU, Ve B,}
of R. Let us show PB,>Py..(¢2=1,2,...). We denote by = an
arbitrary point of R. If S(z, Pu.:) ~F=¢, then there exists V e DB,
such that S@, Pu;r1) =8, Bur)SV. Hence S, Puir) SV ~(B—F)

€Py. If ze R—F, S, Pusss) ~F ¢, then since BF,,<B,, and

By A F'<Uyy, there exist VeB,; and Uyell,;,, such that Sz, B.,.) =V,
VAFCSU ey, If xe N(U,By.,), Uely,, then U~U,%¢, and
hence from U}, <N, S(U,, Ny 1) S U’ for some U e Uy, and V ~FC U
Therefore S(x, By.) S NU, By). Since N(U, By,.) SN, B,,) is
obvious, we obtain S, Bu.) SN, B,) € Po,. If z e F, then Sz,
Uui ) S U ell, for some U, and consequently S, Pu...) & N(U, B..) € Busn
Therefore P.;>P5.. is established.

Putting (R—F)~S=T, we define a mapping f* from R into
T by f*@)=2re¢R—F), f*@)=f(x)(®eF). Defining ecoverings
Q. of T by f*PBu)=%R4, we have obviously Q. >035,,,¢=1,2,...;
acA). Furthermore, {Qu SlacAd; i=1,2,...} =N, |Jacd} is
obvious. If x¢ R—F, then since F is closed, S¥&, M,/) ~ F'=¢ for
some «' € A/, and consequently S%w, B,) ~ F'=¢. Therefore S(z, L.
~F=¢, and S(x, Q) ~S=¢ is obvious. Hence S is a closed subset
of T. Furthermore, if z, y<T, vy, then obviously S(x, Qu)d¥y
for some £,. Thus we can define a uniform topology in R by the
uniform covering system {, {Qu|(a,?) € C}|C is a finite sub-set of
{(a,?)|a e A; 9=1,2,...}} and obtain the uniform space 7" and the
extension f* of f satisfying conditions in this theorem.

The following Hausdorfl’s theorem is a special form of this
theorem for m=a.

Hausdorff’s theorem.'® If R and S are metric spaces, F is a

9) A covering % of R is called normal when there exists a sequence {%;|i=1,2,
...} of coverings such that ®¥, , <w<n (¢=1,2,...).

10) F. Hausdorff: Erweiterung einer stetigen Abbildung, Fun. Math., 30 (1938).
Recently, R. Arens gives a short proof of this theorem by a different method from

us. R. Arens: Extension of functions on fully normal spaces, Pacific Journ. Math.,
11 (1952).
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closed set of R, and if f is a continuous mapping from F into S, then
S can be imbedded isometrically in a metric space T such that f can be
continuously extended to R with values in T, such that the extension
18 a homeomorphism of R—F with T—S, and such that S is a closed
sub-space of T. If f is a homeomorphism, then the extension ts also
a homeomorphism.

Lastly, let us discuss extension theorem in the case that R is
not fully normal.

Theorem 5. Theorem 4 is valid when R is normal and F' satisfies
the second countability axiom or when R is normal and S satisfies the
second countability axiom.

Proof. We assume that R is normal and F' satisfies the second
countability axiom and that {M,|a e A} and {M. |« € A’} are uni-
formities of S and R respectively. If we denote by f a continuous
mapping on F' having values in S, then f~'(N,)=U, is a normal
covering of F. We choose coverings from {f !(M,)|a € A} and take
a sequence U,=U,>UX>U,>U%>... of coverings. Since F is
regular and satisfies the second countability axiom, there exists a
locally finite enumerable refinement U= {U,|n=1,2...} of U,,. Let
us denote by U,={Uy|n=1,2,...} a covering of F such that
Un< U, and consider continuous functions ¢, on R such that
Pu(Um)=1, gon(F"‘Un):O, 0=p.=1. If we put W, = (x| pu(x) >0},

then W= {W,} covers F, ®,F<l, and = W,=W2F. Further-
n=1

more, we take a continuous function ¢, on R such that ¢(W°)=1,
@ (F)=0, 0<9,<1, and define U,= {x| f(x)>0}. Then we have an
enumerable covering W,,= {U,, U, U,...} of R such that B, , F'<U,,.
Since R is normal, from Corollary 2 B, is a normal covering. Thus
we have a normal covering V., =8, ,M,, of R such that B,, \ F<l,,

Next we take a normal covering T, of R such that T¥ < .,
and a normal covering B,, of R such that W,,,F'<U,, in the same
way as in the case of W,,. Putting B,,=W.:5T.,;, we have a normal
covering such that B%<B,,, V. F<U,. Repeating the above pro-
cesses we obtain a sequence of uniform coverings B, >8B%>8,>
B>--- of R such that B,,<M,, B, F<U,,,(1=1,2...) for every
aeA. The remainder of the proof is the same as the proof of
Theorem 4 and is omitted.



