57. On Some Types of Polyhedra

By Keiô NAGAMI

Department of Mathematics, Ehime University (Comm. by K. KUNUGI, M.J.A., April 12, 1956)

Let Q be a class of spaces having some topological property. According to O. Hanner [1], a space Y is called respectively an extensor for Q-spaces (an ES(Q)) or a neighborhood-extensor for Qspaces (an NES(Q)) if every Y-valued mapping (=continuous transformation) defined on any closed subset C of any Q-space X always allows a continuous extension to the whole space X or to an open set G which contains C; and a space Y is called respectively an absolute retract for Q-spaces (an AR(Q)) or an absolute neighborhood retract for Q-spaces (an ANR(Q)) if Y is a Q-space and is a retract or a neighborhood retract of any Q-space containing Y as a closed subset. Analogously to these definitions we generalize the definition of an absolute *n*-retract which was given by C. Kuratowski [2] as follows: A space Y is called an n-ES(Q) if every Y-valued mapping defined on any closed subset C of any Q-space X with an arbitrary small open set $G \supset C$ such that $\dim (X-G) \leq n$, always allows a continuous extension to the whole space X; and a space Yis called an n-AR(Q) if Y is a Q-space and is a retract of any Q-space or X containing Y as a closed subset where $\dim (X-G) \leq n$ holds for an arbitrary small open set $G \supset C$. When Q is a class of metric spaces or of normal spaces, a Q-space Y which is an n-ES(Q) is an n-AR(Q) and conversely: This is essentially proved in [1, Theorem 8.1]. An *n*-sphere is a well-known example which is an n-AR (normal) [3, Theorem 6.1]. We shall study some types of polyhedra which are n-ES(Q) for the case when Q is a class of metric spaces or of normal spaces.

Let $P = \{p_{\alpha}\}$ be an abstract set of points with $|P| \ge n+1$, which will be called a vertex-set, where *n* is an arbitrary positive integer. The complex with the weak topology spanned by all *m*-simplexes, $m \le n$, whose vertices are mutually different points of *P* is called an *n*-full-polyhedron based on *P* and is denoted by K(n, P). An *n*sphere or an *n*-simplex is respectively nothing but an *n*-full-polyhedron based on *P* with |P|=n+2 or with |P|=n+1.

Theorem 1. An n-full-polyhedron K(n, P) is an n-ES (metric) for an arbitrary infinite vertex-set $P = \{p_a; a \in A\}$.

Proof. Let X be a metric space, C be a closed subset of X with an arbitrary small open set D with dim $(X-D) \leq n$ and f be

a mapping of C into K(n, P). Let f_a be a non-negative real-valued function of C such that $f_a(x)$ is a barycentric weight of f(x) on p_a . Then f_{α} is continuous and $\{U_{\alpha} = \{x; f_{\alpha}(x) > 0\}; \alpha \in A\}$ is an open covering of C whose order is at most n+1. First we shall show that there exists a locally finite open covering $\{V_{\alpha}; \alpha \in A\}$ of X whose order is at most n+1 such that $V_{\alpha} \frown C = U_{\alpha}$ for every $\alpha \in A$. Since any simplicial polyhedron with the weak topology is an NES (metric) [1, Theorem 25.1], f is continuously extended to g defined on some open set G with $G \supset C$. Let g_a be a non-negative real-valued function of G such that $g_a(x)$ is a barycentric weight of g(x) on p_a . Then $\{W_{\alpha} = \{x; g_{\alpha}(x) > 0\}; \alpha \in A\}$ is an open covering of G whose order is at most n+1. Let $D \supset C$ be an open set of X with dim $(X-D) \leq n$. Let H and F be closed in X and E be open in X with $D \subset F \subset E$ $\subset H \subset G$. Then an open covering $\{(W_{\alpha} - D) \smile (X - H); \alpha \in A\}$ of X - Dcan be refined by a locally finite open covering $\{B_{\alpha}; \alpha \in A\}$ of X-Dwhose order is at most n+1 such that $B_a \subset (W_a - D) \cup (X-H)$ for every $\alpha \in A$. Since $\{W_{\alpha}\}$ is locally finite in G [1, Lemma 25.4], $\{V_{a}=(W_{a} \frown E) \smile (B_{a}-F); \alpha \in A\}$ is, as can easily be seen, a desired one.

Let h_a be a non-negative real-valued continuous function of Xsuch that i) $h_a | C=f_a$, ii) $h_a(x)=0$ if $x \in X-(C \smile V_a)$, iii) $\{x; h_a(x)>0\}$ $=V_a$. Let $h: X \to K(n, P)$ be a transformation such that h(x) is the center of gravity of the vertices of $\{p_a; x \in V_a\}$ with the weights $h_a(x) / \sum_{\beta \in A} h_\beta(x)$. Then h is continuous and satisfies h | C=f, which completes the proof.

Using the fact that every finite simplicial polyhedron is an NES (normal) [1, Theorem 27.4], we get the following theorem by the quite analogous method used in the above.

Theorem 2. Every finite n-full-polyhedron is an n-ES (normal). **Theorem 3.** A finite simplicial polyhedron L with dim $L \leq n$ is an n-ES (normal) if and only if L is a retract of a finite n-fullpolyhedron.

This is almost evident from the fact that L can be imbedded homeomorphically, as a subcomplex, into a finite *n*-full-polyhedron based on P which consists of suitable many vertices. On the other hand, the following analogous theorem is not trivial since a simplicial polyhedron with the weak topology is not always metrizable.

Theorem 4. An infinite simplicial polyhedron L with the weak topology such that dim $L \leq n$ is an n-ES (metric) if and only if L is a retract of K(n, P(L)), where P(L) denotes a set of all vertices of L.

Proof. Since if-part is evident, we shall prove only-if-part. Suppose that L is an n-ES (metric) and consider L as a subcomplex of K = K(n, P(L)). Let $\{s_{\lambda}; \lambda \in \Lambda\}$ be a collection of all (closed) nsimplexes which are not contained in L and suppose that Λ is a well-ordered set which consists of all ordinals less than some fixed ordinal η . Since L is an *n*-ES (metric), there exists a retract-mapping $f_1: L_1 = L \smile s_1 \rightarrow L$. Let $L_{\lambda} = L \smile \{s_{\varepsilon}; \varepsilon \leq \lambda\}$, μ be some fixed ordinal with $1 < \mu < \eta$ and put the transfinite induction assumption that there exist retract-mappings $f_{\nu}: L_{\nu} \to L, \nu < \mu$, such that $f_{\nu} \mid L_{\varepsilon} = f_{\varepsilon}$ for any ν and ξ with $\xi < \nu$. Let us show the existence of a retract-mapping $f_{\mu}: L_{\mu} \to L$ such that $f_{\mu} \mid L_{\nu} = f_{\nu}$ for any $\nu < \mu$. Since $F = s_{\mu} \frown (L \cup \{s_{\nu}\})$ $\nu < \mu$) is a finite subpolyhedron of s_{μ} , we can choose a $\nu_0 < \mu$ with $F = s_{\mu} \uparrow L_{\nu_0}$. Then $f_{\nu_0} | F$ has a continuous extension $g: s_{\mu} \to L$. Let $f_{\mu}: L_{\mu} \to L$ be a transformation such that i) $f_{\mu} | s_{\mu} = g$, ii) $f_{\mu} | s_{\nu} = f_{\nu} | s_{\nu}$ when $\nu < \mu$, iii) $f_{\mu} \mid L =$ the identity mapping. Then f_{μ} is continuous since the topology of K is the weak one. Moreover, it is evident that $f_{\mu} \mid L_{\nu} = f_{\nu}$ for every $\nu < \mu$, which completes the transfinite induction. Now we can construct for any $\lambda < \eta$ a retract-mapping $f_{\lambda}: L_{\lambda} \rightarrow L$ such that $f_{\mu} \mid L_{\nu} = f_{\nu}$ for any μ and ν with $\nu < \mu < \eta$. Let $f: K \rightarrow L$ be a transformation such that i) $f | s_{\lambda} = f_{\lambda} | s_{\lambda}$ for any $\lambda < \eta$, ii) $f \mid L =$ the identity mapping, and then f is continuous. Therefore L is a retract of K, which completes the proof.

References

- O. Hanner: Retraction and extension of mappings of metric and non-metric spaces, Ark. Mat., 2, 315-360 (1952).
- [2] C. Kuratowski: Sur les espaces localement connexes et péaniens en dimension n, Fund. Math., 24, 269–287 (1935).
- [3] K. Morita: On the dimension of normal spaces II, J. Math. Soc. Japan, 2, 16-33 (1950).