234 [Vol. 32,

54. Evans-Selberg's Theorem on Abstract Riemann Surfaces with Positive Boundaries. II

By Zenjiro KURAMOCHI

Mathematical Institute, Osaka University (Comm. by K. Kunugi, M.J.A., April 12, 1956)

Our $N_{V_m(p)}(p,q)$ is increasing with respect to m. We define the value of N(z,q) at a minimal point p by $\lim_{m\to M'} N_{V_m(p)}(p,q)$ denoted by N(p,q). If p or q belongs to R, this definition is equivalent to that defined before.

If $V_m(p)$ is not regular, we define $N_{V_m(p)}(p,q)$ by $\lim_{m' \to m} N_{V_{m'(p)}}(p,q)$, where m' < m and $V_{m'}(p)$ is regular. In the case when $V_m(p)$ is regular, it is proved that $\lim_{m' \to m} N_{V_{m'(p)}}(p,q) = N_{V_m(p)}(p,q)$, hence we can define $N_{V_m(p)}(p,q)$ for every $m < \sup_{z \in R} N(z,p) = M'$. As in case of a Riemann surface with a null-boundary, we can prove the following

Theorem 10. 1) N(z,q) $(q \in \overline{R})$ is δ -lower semicontinuous in $R + B_1$.

- 2) N(z,q) is superharmonic in weak sense at every point of $R + B_1$.
 - 3) If p and q are in $R+B_1$, then N(p,q)=N(q,p).

Till now N(z,q) $(q \in \overline{R})$ is defined only on $R+B_1$. Next we define N(z,q) at points belonging to B_0 . If $p \in B_0$, $N(z,p) = \int_{B_1} N(z,p_a) d\mu(p_a)$ $(p_a \in B_1)$ by Theorem 8. Although the uniqueness of this mass distribution is not proved by the present author, the value of N(z,q) in $R+B_1$ is uniquely determined. On the other hand, by 3), for $q \in B_1$, $N(p_a,q)=N(q,p_a)$. Hence it is quite natural to define the value of N(z,q) at $p \in B_0$ by $\int_{0}^{\infty} N(p_a,q) d\mu(p_a)$. Evidently by 3), in such definition, we have N(q,p)=N(p,q), where the term of the right hand side does not depend on a particular distribution but on the behaviour of N(z,q), because $N(p,q)=\lim_{m\to M'} N_{r_m(p)}(p,q)$ and $N_{r_m(p)}(p,q)$ is defined by the value of N(z,q) on $\partial_{0}V_m(p)$. As for the behaviour of N(z,q) $(q \in \overline{R})$, we have the following

Theorem 11. 1) If $q \in R + B_1$, then N(p,q) = N(q,p) for $p \in \overline{R}$.

- 2) If $q \in \overline{R}$ and $p \in R + B_1$, then $N(p,q) = \int N(p,q_a) d\mu(q_a)$, where $N(z,q) = \int N(z,q_a) d\mu(q_a)$.
 - 3) N(z,q) $(q \in \overline{R})$ is δ -lower semicontinuous in \overline{R} .

- 1') For every p and q belonging to \overline{R} , N(p,q)=N(q,p).
- 7. Potentials on \overline{R} . In the sequel, we shall study the mass distributions on \overline{R} . We have seen that N(z,p) has the essential properties of logarithmic potential: lower semicontinuity in \overline{R} , symmetricity and superharmonicity in $R+B_1$. But there exists the fatal difference between our case and space, that is, the real mass distribution can be defined only on $R+B_1$, i.e. the distribution on B_0 is superficial and it can be replaced, by Theorem 8, by that on B_1 where N(z,p) is superharmonic. Therefore only subsets $R+B_1$ of \overline{R} can be a kernel of mass distribution. Hence it is easy to construct the potential theory on \overline{R} .

The energy integral $I(\mu)$ of a mass distribution μ on a δ -closed subset of $R+B_1$ defined as in space

$$I(\mu)\!=\!\int\!\int\!N(q,p)d\mu(p)d\mu(q)$$

and the ${\rm \check{c}apacity}$ is defined as usual. In § 1, we defined capacity of F, we must study the relation between two capacities. At first, we have, if ${\rm Cap}(F) > 0$, ${\rm \check{C}ap}(F) > 0$. Now we have the following

Theorem 12. Let F be a δ -closed subset of $R+B_1$ of capacity positive. Then there exists a unit mass distribution on F whose energy is minimal and whose potential U(z) has the following properties:

- 1) U(z) is a constant C on the kernel of this distribution.
- 2) U(z)=C on E except possibly a set of capacity zero.
- 3) $U(z) = U_F(z)$.
- 4) $U(z)=C\omega_F(z)$, where $\omega_F(z)$ is the equilibrium potential of F. By 2) of this theorem and by 2) of Theorem 5, we have the following Corollary. $Cap(F)=\overset{*}{C}ap(F)$.

Transfinite diameter. Since N(z, p) $(p \in \overline{R})$ is δ -lower semicontinuous in \overline{R} , the transfinite diameter of a δ -closed subset A of \overline{R} is defined as follows:

$$\frac{1}{D_A} = \lim_{n=\infty} \left(\min \left(\frac{1}{{}_nC_2} \sum_{\substack{i \neq j \\ i,j=1 \\ p_i,p_j \in A}}^{n,n} (p_i,p_j)) \right) \right).$$

Then as in the case of R^* with a null-boundary, we have the following

Theorem 13. If $D_A=0$ for a δ -closed subset A of \overline{R} , then there exists a superharmonic function U(z) in \overline{R} such that U(z)=0 on ∂R_0 , $\int_{\Omega} \frac{\partial U(z)}{\partial n} ds = 2\pi \text{ and } U(z) = \infty \text{ at every point of } A.$

For a δ -closed subset A of $R+B_1$, it can be proved as in space

 $D_{A}=rac{1}{I(\mu)}$, where $I(\mu)$ is the energy of the equilibrium potential of

A. Hence we have the following

Theorem 14 (Extension of Evans-Selberg's theorem). Let A be a δ -closed subset of $R+B_1$, of capacity zero. Then there exists a unit mass distribution on A whose potential satisfies the following properties:

- 1) U(z)=0 on ∂R_0 .
- 2) $U(z) = \infty$ at every point of A.
- 3) $U(z) = U_A(z)$.

4)
$$\int_{\partial R_0} \frac{\partial U(z)}{\partial n} ds = \int_{C_r} \frac{\partial U(z)}{\partial n} ds, \text{ for the niveau curve } C_r \text{ of } U(z)$$

with $r \notin E$, where E is a set in the interval $[0, \infty]$ such that $\max E = 0$.

In general cases we can not omit the condition that A is a subset of $R+B_1$. The reason is as follows: there may exist a set B_0 which is an F_{σ} and of capacity zero and any mass can not be distributed on B_0 , in other words, B_0 has behaviour like an empty set in space for mass distribution though B_0 is not empty.

The value of U(z) at a point $p \in B_0$ is given as follows: since $N(z,p)=\int\limits_{B_1}N(z,p_a)d\mu(p_a)(p_a\in B_1),\ U(p)=\int\limits_{B_1}U(p_a)d\mu(p_a).$ Therefore U(z) may be infinite at larger set A' than A.