76. On the *s*-weak Topology of W*-algebras

By Shôichirô SAKAI

Mathematical Institute, Tôhoku University, Sendai, Japan (Comm. by K. KUNUGI, M.J.A., May 15, 1956)

1. Preliminaries. The author [5] had shown that the σ -weak topology of W^* -algebras is free from the adjoint operation as follows:

Theorem A. Suppose that a C*-algebra M is the adjoint space of a Banach space F, then it is a W*-algebra and the topology $\sigma(M, F)$ of M is the σ -weak topology.

This will suggest that the following question is affirmative: Suppose that ϕ is an algebraic isomorphism (not necessarily adjoint preserving) of a W*-algebra onto another. Then, can we conclude that ϕ is σ -weakly bicontinuous?

The purpose of this paper is to prove this in a more general form $(\S 2, \text{ Theorem } 2)$.

2. Theorems. Let M be a C^* -algebra, M^* the adjoint space of M.

Definition. A subspace V of M^* is said invariant, if $f \in V$ implies f_a , ${}_bf \in V$ for any $a, b \in M$, where $f_a(x) = f(xa)$ and ${}_bf(x) = f(bx)$.

Theorem 1. Let V be an invariant subspace of M^* which is everywhere $\sigma(M^*, M)$ -dense in M^* , then $V \cap S$ is everywhere $\sigma(M^*, M)$ -dense in S, where S is the unit sphere of M^* .

Proof. Put $T_a f = f_a$ for $f \in V$, then T_a is a linear operator on the normed space V and moreover $||T_a f|| = \sup_{||w|| \le 1} |f(xa)| \le ||f|| |||a|||$;

hence $||T_a|| \leq |||a|||$, where $||T_a||$ is the operator norm of T_a .

Suppose that $T_a=0$, then $(T_af)(x)=f(xa)=0$ for all $f \in V$ and $x \in M$. Since V is everywhere $\sigma(M^*, M)$ -dense in M^* , xa=0 for all $x \in M$; hence a=0. Moreover $T_{ab}=T_aT_b$ and so the mapping $a \to T_a$ is an isomorphism; hence by the minimality of C^* -norm [cf. [1], Th. 10] $||T_a||=|||a|||$ for all $a \in M$. Therefore,

$$||| a ||| = \sup_{\|x\| \le 1, f \in V \cap S} |f(xa)| = \sup_{\|x\| \le 1, f \in V \cap S} |xf(a)|$$

$$\leq \sup_{x \in V \cap S} |f(a)| \quad (|| xf|| \le |||x||| ||f||),$$

so that $|||a||| = \sup_{f \in V \cap S} |f(a)|$ for all $a \in M$; hence the bipolar of $V \cap S$ in E^* is S, that is, $V \cap S$ is everywhere $o(M^*, M)$ -dense in S. This completes the proof.

J. Dixmier [2] had shown a characterization of adjoint Banach spaces as follows: Let E be a Banach space, E^* the adjoint space of E and V be a subspace which is strongly closed and everywhere

 $\sigma(E^*, E)$ -dense in E^* . Then, if any strongly closed, proper subspace of V is not everywhere $\sigma(E^*, E)$ -dense in E^* , V is said to be *minimal*.

Theorem B. If there is a minimal subspace V in E^* such that $V \cap S$ is everywhere $\sigma(E^*, E)$ -dense in S, where S is the unit sphere of E^* , then E is the adjoint space of V.

Using Theorems A and B, we obtain immediately the following corollary of Theorem 1.

Corollary. For a given C^* -algebra M, if there is an invariant minimal subspace F in its adjoint space, it is a W^* -algebra and $\sigma(M, F)$ is the σ -weak topology.

It is noteworthy that the notion of positive functionals, which has played a principal rôle in the theory of W^* -algebras, is not employed in above discussions.

Now we shall deal with isomorphisms which are not necessarily adjoint preserving.

Let M be an AW^* -algebra in the sense of Kaplansky [4], N a C^* -algebra, S the unit sphere of M and ϕ be an isomorphism of M onto N.

Lemma 1. Let (e_n) $(n=1,2,\cdots)$ be a family of orthogonal projections of M and put $k_n = \sup_{x\geq 0, x\in e_n Me_n\cap S} ||| \phi(x) |||$, then there are an

integer n_0 and a positive number k such that $k_n \leq k$ for $n \geq n_0$.

Proof. Suppose that the lemma is false, then there is a sequence of positive elements (a_{nj}) $(a_{nj} \in e_{nj}Me_{nj} \cap S)$ such that $||| \phi(a_{nj}) ||| \ge j$ $(j=1, 2, \cdots)$. On the other hand, let A be a maximal abelian selfadjoint subalgebra of M containing all a_{nj} , then $\phi(A)$ is a maximal abelian subalgebra of N, so that it is uniformly closed; hence by the uniqueness theorem of norm in semi-simple abelian Banach algebras [3; Satz 17], ϕ is bicontinuous on A. This contradicts the above inequality and completes the proof.

Lemma 2. ϕ is uniformly continuous on M.

Proof. Since M is a direct sum of a finite algebra and a purely infinite algebra, and ϕ becomes naturally adjoint preserving on the center of M, the proof is reduced to each case.

Case (1). Suppose that M is purely infinite, then the unit can be exhibited as the l.u.b. of \aleph_0 equivalent orthogonal projections (e_i) such that $e_i \sim I$. By Lemma 1 there is a projection e_{n_0} such that $\sup_{x \in e_{n_0}Me_{n_0}\cap S} ||| \phi(x) ||| \leq 4k$. Let v be a partially isometric operator such that $v^*v = e_{n_0}$ and $vv^* = I$, then $x = ve_{n_0}v^*xve_{n_0}v^*$ and if $|||x||| \leq 1$, $||| e_{n_0}v^*xve_{n_0}||| \leq 1$, so that

 $\begin{aligned} ||| \phi(x) ||| &= ||| \phi(ve_{n_0}v^*xve_{n_0}v^*) ||| \\ &= ||| \phi(v) \phi(e_{n_0}v^*xve_{n_0}) \phi(v^*) ||| \\ &\leq 4 ||| \phi(v) ||| \cdot ||| \phi(v^*) ||| \cdot k. \end{aligned}$

This means that ϕ is continuous.

Case (2). Suppose that M is a finite algebra, then it is a direct sum of two algebras of types I and II. Therefore, the proof is reduced to each case.

(i) Now suppose that M is of type II, then there exists a sequence (e_j) of orthogonal projections such that for any e_j there is a projection f_j as follows: $e_jf_j=0$, $e_j\sim f_j$ and $e_{j-1}\sim e_j+f_j$ $(j\geq 2)$, and $e_{i}f_{i}=0$, $e_{i}\sim f_{1}$ and $e_{i}+f_{i}=I$. Therefore, by Lemma 1 there is an integer j_0 such that $\sup_{x\in e_{j_0}Me_{j_0}\cap S} ||| \phi(x) ||| \leq 4k$. On the other hand, there is a finite family $(p_i | i=1, 2, \cdots, m)$ of orthogonal equivalent projections such that $p_1=e_{j_0}$ and $\sum_{i=1}^m p_i=I$.

Let v_i be a partially isometric operator such that $v_i^* v_i = p_i$ and $v_i v_i^* = e_{j_0}$, then $x = \left(\sum_{i=1}^m v_i^* e_{j_0} v_i\right) x \left(\sum_{i=1}^m v_i^* e_{j_0} v_i\right) = \sum_{i,j=1}^m v_i^* e_{j_0} v_i x v_j^* e_{j_0} v_j$. Since $||| x ||| \le 1$ means $||| e_{j_0} v_i x v_j^* e_{j_0} ||| \le 1$,

$$\begin{split} ||| \phi(x) ||| &\leq \sum_{i,j=1}^{m} ||| \phi(v_{i}^{*}) \phi(e_{j_{0}} v_{i} x v_{j}^{*} e_{j_{0}}) \phi(v_{j}) ||| \\ &\leq 4k \cdot \sum_{i,j=1}^{m} ||| \phi(v_{i}^{*}) ||| \cdot ||| \phi(v_{j}) |||; \end{split}$$

hence ϕ is continuous.

(ii) Suppose that $M = \sum_{1 \le i < \infty} Me_i$, where e_i is a central projection of M and Me_i is of type I_i .

By Lemma 1 there are an integer n_0 and a number $k \ (>0)$ such that $k_n \leq k$ for $n \geq n_0$. Put $e = \bigvee e_n$, then for any $x \in eMe \cap S$

$$||| \phi(exe) ||| = ||| \phi(e)\phi(x)\phi(e) ||| = \sup_{n \ge n_0} ||| \phi(e_n)\phi(x)\phi(e_n) ||| \\ = \sup_{n \ge n_1} ||| \phi(e_nxe_n) ||| \le 4k,$$

for $(\phi(e_n))$ are orthogonal central projections of N, and $\phi(e) = \underset{n \geq n_0}{V} \phi(e_n)$.

Moreover, for each Me_n $(\neq (0))$ there are orthogonal maximal abelian projections $(p_i | i=1, 2, \dots, n)$ such that $p_i \sim p_j$ and $\sum_{i=1}^{n} p_i = I$.

Since ϕ is continuous on the abelian algebra p_1Mp_1 from the proof of Lemma 1, we can conclude that ϕ is continuous on Me_n by the same method with (i), so that it is also continuous on $\sum_{i=1}^{n_0-1} Me_i$; finally it is so on M. This completes the proof.

Now we shall show the following theorem.

Theorem 2. Let M be a W^* -algebra, N a C^* -algebra and ϕ be an isomorphism (not necessarily adjoint preserving) of M onto N, then N is a W^* -algebra and ϕ is σ -weakly bicontinuous.

Proof. By Lemma 2, ϕ is uniformly continuous, so that it is bicontinuous by the classical theorem of Banach space. Let M^* and

No. 5]

 N^* be the adjoint spaces of M and N respectively, and M_* be the subspace of M^* composed of all σ -weakly continuous linear functionals on M.

Then, for any $y^* \in M^*$ and $x \in N$

 $(\phi^{-1}(x), y^*)_M = (x, \tilde{\phi}^{-1}(y^*))_N,$

where $(a, b)_{M}(\text{resp. }(a', b')_{N})$ is the value at a (resp. a') of a linear functional b of M^{*} (resp. b' of N^{*}), and $\tilde{\phi}^{-1}$ is the adjoint mapping of ϕ^{-1} .

Since ϕ^{-1} is uniformly bicontinuous, $\tilde{\phi}^{-1}$ is a bicontinuous mapping of M^* with the topology $\sigma(M^*, M)$ onto N^* with the topology $\sigma(N^*, N)$, and so $\tilde{\phi}^{-1}(M_*)$ is a minimal subspace of N^* . Moreover, if $\tilde{\phi}^{-1}(\eta) \in \tilde{\phi}^{-1}(M_*)$, then

$$\begin{split} {}_{b}\widetilde{\phi}^{-1}(\eta)_{a}(x) &= \widetilde{\phi}^{-1}(\eta)(bxa) = (bxa, \ \widetilde{\phi}^{-1}(\eta)_{N} \\ &= (\phi^{-1}(bxa), \ \eta)_{M} = (\phi^{-1}(b)\phi^{-1}(x)\phi^{-1}(a), \ \eta)_{M} \\ &= (\phi^{-1}(x), \ {}_{\phi^{-1}(b)}\eta_{\phi^{-1}(a)})_{M} \rightleftharpoons (x, \ \widetilde{\phi}^{-1}({}_{\phi^{-1}(b)}\eta_{\phi^{-1}(a)}))_{N}. \end{split}$$

Since $_{\phi^{-1}(D)}\eta_{\phi^{-1}(\alpha)}$ belongs to M_* , $_{b}\widetilde{\phi}^{-1}(\eta)_{\alpha}$ belongs to $\widetilde{\phi}^{-1}(M_*)$, so that $\widetilde{\phi}^{-1}(M_*)$ is an invariant minimal subspace of N^* ; hence by the corollary of Theorem 1, N is a W^* -algebra. As $\sigma(N, \widetilde{\phi}^{-1}(M_*))$ is the σ -weak topology, ϕ is σ -weakly bicontinuous. This completes the proof.

Remark 1. In this paper, the existence of the unit in C^* -algebras is not assumed, and particularly Theorem A implies that an adjoint C^* -algebra has necessarily the unit. More generally we can show the following theorem [cf. [5]; Appendix]: A C^* -algebra has the unit if and only if its unit sphere has an extreme point.

Remark 2. Lemma 2 is immediately obtained from the result of C. E. Rickart [Ann. Math., 51, 615-628 (1950)] which assures that an isomorphism of a C^* -algebra onto another is uniformly continuous.

But, as our proof is extensible to some *into*-isomorphisms of AW^* -algebras, it is stated.

References

- F. F. Bonsall: A minimal property of the norm in some Banach algebras, Journal of the London Math. Soc., 29, 156-164 (1954).
- [2] J. Dixmier: Sur un théorème de Banach, Duke Math. Jour., 15, 1057–1071 (1948).
- [3] I. Gelfand: Normierte Ringe, Recueil Mathématique (Matematiceski Sbornik) N. S., 9, 3-24 (1941).
- [4] I. Kaplansky: Projections in Banach algebras, Ann. Math., 53 (2), 235-249 (1952).
- [5] S. Sakai: A characterization of W*-algebras (to appear in the Pacific Journal of Mathematics).