100. Contributions to the Theory of Semi-groups. IV

By Kiyoshi ISÉKI Kobe University

(Comm. by K. KUNUGI, M.J.A., July 12, 1956)

Following G. Thierrin [7], a semi-group S is called strongly reversible, if, for any two elements a, b of S, there are three positive integers r, s and t such that

$$(ab)^r = a^s b^t = b^t a^s$$
.

Such a notion is a generalisation of a commutative semi-group.

In this paper, we are mainly concerned with generalisations of the results by S. Schwarz [4-6].

Let \mathfrak{A} be a two-sided ideal of S. We denote by $\overline{\mathfrak{A}}$ the set of element a such that $a^s \in \mathfrak{A}$ for some positive integer s. $\overline{\mathfrak{A}}$ is called the *closure* of \mathfrak{A} .

Theorem 1. If a semi-group S is strongly reversible, the closure $\overline{\mathfrak{A}}$ of any two-sided ideal \mathfrak{A} is a two-sided ideal.

Proof. Let a be an element of $\overline{\mathfrak{A}}$ and let x be an element of S. Then there is a positive integer k such that $a^k \in \mathfrak{A}$, and there are three integers r, s and t such that

Hence, we have

$$(ax)^{rk} = (a^s x^t)^k = a^{sk} x^{tk} \in \mathfrak{A} x^{tk} \subseteq \mathfrak{A}.$$

 $(ax)^r = a^s x^t = x^t a^s$.

Thus $ax \in \overline{\mathfrak{A}}$. Similarly $xa \in \overline{\mathfrak{A}}$. Therefore, $\overline{\mathfrak{A}}$ is a two-sided ideal.

A semi-group S is called a *periodic semi-group*, if, for every element a of S, the semi-group (a) generated by a contains a finite number of different elements.

Such a semi-group has been extensively studied by S. Schwarz.

Theorem 2. Let \mathfrak{A} be a two-sided ideal of a strongly reversible periodic semi-group S, and let $\{e_{\alpha}\}$ be the set of all idempotents of \mathfrak{A} , then

$$\overline{\mathfrak{A}} = \bigcup K^{(\alpha)},$$

where $K^{(\alpha)}$ is the largest subsemi-group of S containing only one idempotent e_{α} .

For the detail of the semi-group $K^{(\alpha)}$, see K. Iséki [3].

Proof. Let $a \in K^{(\alpha)}$, then $a^s = e_a$ for some s. Hence $a \in \overline{\mathfrak{A}}$ and we have $\bigcup_a K^{(\alpha)} \subseteq \overline{\mathfrak{A}}$. Conversely, let $a \in \overline{\mathfrak{A}}$, then $a^s \in \mathfrak{A}$ for some s. Hence there is an integer t such that $(a^s)^t = e_a \in K^{(\alpha)}$. This shows $a \in K^{(\alpha)}$. Therefore

No. 7]

$$\overline{\mathfrak{A}} \subseteq \bigcup_{\alpha} K^{(\alpha)}.$$

Definition 1. If $\overline{\mathfrak{A}} = \mathfrak{A}$, \mathfrak{A} is called a *closed ideal*. A two-sided ideal \mathfrak{P} is called *prime*, if $ab \in \mathfrak{P}$ implies $a \in \mathfrak{P}$ or $b \in \mathfrak{P}$, equivalently, $S - \mathfrak{P}$ is a semi-group:

Theorem 3. The intersection of any number of prime ideals \mathfrak{P}_a is closed.

Proof. Let $\mathfrak{A} = \bigcap_{a} \mathfrak{P}_{a}$, then it is clear that $\mathfrak{A} \subseteq \overline{\mathfrak{A}}$. For a of $\overline{\mathfrak{A}}$, there is a positive integer s such that

$$a^s \in \mathfrak{A} = \bigcap \mathfrak{P}_{\mathfrak{a}}.$$

Hence $a^s \in \mathfrak{P}_a$ for every α . Since every \mathfrak{P}_a is prime, $a \in \mathfrak{P}_a$. Therefore, $a \in \bigcap \mathfrak{P}_a = \mathfrak{A}$. So we have $\mathfrak{A} \subseteq \mathfrak{A}$. Hence \mathfrak{A} is closed.

We shall prove the following theorem which is a generalisation of S. Schwarz theorem [6].

Theorem 4. Any closed ideal of a commutative periodic semigroup is the intersection of some prime ideals.

Proof. By Theorem 2, we have

$$\mathfrak{A} = \overline{\mathfrak{A}} = \bigcup_{\alpha \in A_1} K^{(\alpha)},$$

where $e_{\alpha}(\alpha \in \Lambda_1)$ is the set of all idempotents in \mathfrak{A} . By Theorem 2 of my paper [2], there is a disjoint decomposition:

$$\mathbf{S} = \bigcup_{\alpha \in \mathcal{A}_1} K^{(\alpha)} \cup \bigcup_{\beta \in \mathcal{A}_2} K^{(\beta)}$$

Then we can find by Zorn's lemma the family of ideals $\mathfrak{P}_{\beta}(\beta \in \Lambda_2)$ satisfying the following conditions:

$$(1)$$
 $\mathfrak{A} \subset \mathfrak{P}_{\beta}$,

 $(2) \qquad \mathfrak{P}_{\beta} \cap K^{(\beta)} = 0,$

(3) \mathfrak{P}_{β} is maximal with respect to the condition (2).

From the conditions (1) and (2), we have easily

$$\mathfrak{A} = \bigcap_{\mathfrak{\beta} \in A_2} \mathfrak{P}_{\mathfrak{\beta}}.$$

Therefore, \mathfrak{A} is the intersection of $\mathfrak{P}_{\beta}(\beta \in \Lambda_2)$. (For such a consideration, see K. Iséki [2] or K. E. Aubert [1].)

Now we shall show that each \mathfrak{P}_{β} is a prime ideal. The idea of the proof is due to S. Schwarz [6]. To prove it, let $a, b \in S - \mathfrak{P}_{\beta}$, then, by the condition (3), the ideal $\{\mathfrak{P}_{\beta}, a, aS\}$ meets $K^{(\beta)}$. Similarly $\{\mathfrak{P}_{\beta}, b, bS\} \frown K^{(\beta)} \neq 0$. From $K^{(\beta)} \frown \mathfrak{P}_{\beta} = 0$, we have

 $\{a, Sa\} \frown K^{(\beta)} \neq 0 \neq \{b, bS\} \frown K^{(\beta)}.$

If $a \in K^{(\beta)}$ and $b \in K^{(\beta)}$, then we have $ab \in K^{(\beta)} \subset S - \mathfrak{P}_{\beta}$.

If $a \in K^{(\beta)}$ and $bx \in K^{(\beta)}$, then $abx \in K^{(\beta)}$ and since \mathfrak{P}_{β} is an ideal, $ab \in \mathfrak{P}_{\beta}$. Hence $ab \in S - \mathfrak{P}_{\beta}$.

If $ax \in K^{(\beta)}$ and $by \in K^{(\beta)}$, by a similar argument, we have $ab \in S - \mathfrak{P}_{\beta}$.

Therefore, each \mathfrak{P}_{β} is a prime ideal.

Corollary 1. In any commutative periodic semi-group, an ideal is closed, if and only if, it is the intersection of some prime ideals.

Let S be a strongly reversible periodic semi-group, then by the decomposition theorem (see K. Iséki [2]), we have

$$S = \bigcup K^{(a)}$$

where α runs over all idempotents e_{α} of S, and $K^{(\alpha)} \frown K^{(\beta)} = 0$ for $\alpha \neq \beta$. Each $G^{(\alpha)} = K^{(\alpha)}e_{\alpha} = e_{\alpha}K^{(\alpha)}$ is a group. An element of $G^{(\alpha)}$ is called *regular*. It is easily seen that the set of all regular elements of a commutative periodic semi-group is a commutative semi-group.

The set E of all idempotents of a strongly reversible periodic semi-group is a commutative semi-group. Let E_1 be an ideal of E, then $J = \bigcup_{e_{\beta} \in \mathbb{Z}} K^{(\beta)}$ is a two-sided ideal of S. To prove it, let $a \in J$ and $x \in S$. Suppose that $a \in K^{(\alpha)} \subset J$, then there are two natural numbers ρ, τ such that

$$a^{\mathrm{p}} = e_{\mathrm{a}}, x^{\mathrm{t}} = e_{\mathrm{w}}$$

On the other hand, we can find three positive integers r, s and t such that

$$(ax)^{r_{\mathsf{P}^{\tau}}} = (a^s)^{{}_{\mathsf{P}^{\tau}}} (x^t)^{{}_{\mathsf{P}^{\tau}}} = e_a e_\omega \in E_1 \cdot E \subseteq E_1$$

 $(ax)^r = a^s x^t = x^t a^s$.

Therefore, ax is contained in some $K^{(T)}$ of J. Similarly xa is contained in some $K^{(T')}$ of J. Hence J is an ideal of S.

Now let E_1 be a prime ideal of E. Then we shall show that J is a prime ideal of S.

Let $a, b \in S-J$, then there are ρ, τ such that

$$a^{\scriptscriptstyle P} = e_{\scriptscriptstyle E}, \qquad b^{\scriptscriptstyle T} = e_{\scriptscriptstyle T}$$

and $e_{\xi}e_{\eta} \in E - E_1$. Since S is strongly reversible, there are three natural numbers r, s and t such that

$$(ab)^r = a^s b^t = b^t a^s$$

Hence

Hence

$$(ab)^{r_{\mathsf{P}}\tau} = e_{\xi}e_{\eta} \in E - E_{1}$$

Therefore $ab \in S - J$.

If J is a two-sided ideal of S, the set E_1 of all idempotents in J is an ideal of E. If J is a prime ideal of S, then we can prove that E_1 is a prime ideal of E.

On the first part, from $E_1 \subseteq J$, we have

$$E_1 \cdot E \subseteq J \cdot S \subseteq J,$$

and since each element of E_1E is idempotent of J, $E_1E\subseteq E_1$. Now, let J be a prime ideal of S, and let $e_{\xi}e_{\eta} \in E-E_1$, then $e_{\xi}e_{\eta} \in S-J$. Hence, we have $e_{\xi}e_{\eta} \in S-J$. Since $e_{\xi}e_{\eta}$ is an idempotent of S, $e_{\xi}e_{\eta} \in E-E_1$, which completes the proof. If a prime ideal J_1 of S is distinct from a prime ideal J_2 , then $J_1-J_2 \neq 0$ or $J_2-J_1 \neq 0$. Suppose that $J_1-J_2 \neq 0$, then there is an element a such that $a \in J_1$ and $a \in J_2$. If $a^{\circ}=e_a$, $e_a \in J_2$ and $e_a \in J_2$ since J_2 is a prime ideal. Hence $E_1 \neq E_2$.

Therefore, we have the following

Theorem 5. In any strongly reversible periodic semi-group,

1) the set E of all idempotents of S is commutative semi-group;

2) an ideal of E corresponds to a two-sided ideal of S and its converse;

3) there is a 1-1 correspondence between the collection of prime ideals in E and the set of prime ideals in S.

Let *E* be the set of all idempotents of a semi-group *S*. If $e_{\alpha}e_{\beta}=e_{\alpha}$ for $e_{\alpha}, e_{\beta} \in E$, we write $e_{\alpha} \leq e_{\beta}$. This order defines a quasi-order on *E*. If *E* is commutative, *E* is a partially ordered set on " \leq " (see S. Schwarz [4]).

In any commutative periodic semi-group S, if $e_{\alpha} \ge e_{\beta}$, $a \to ae_{\beta}$ $(a \in K^{(\alpha)})$ is a homomorphic mapping from $K^{(\alpha)}$ to $G^{(\beta)}$ (see S. Schwarz [4]).

Theorem 6. In a strongly reversible periodic semi-group S, if \mathfrak{P} is a prime ideal of S, and $e' \leq e$, $e \in \mathfrak{P}$, $e, e' \in E$, then $e' \in \mathfrak{P}$.

Proof. $e' \leq e$ implies e' = e'e, and by $e \in \mathfrak{P}$, we have $e' \in \mathfrak{P}$.

By a character of a semi-group S, we mean a complex valued function $\chi(x)$ satisfying $\chi(a)\chi(b) = \chi(ab)$ for every a, b of s.

The following propositions are clear.

Proposition A. Let $\chi(x)$ be a character of S, then the set $\{x \mid \chi(x)=0\}$ is a prime ideal of S.

Proposition B. Let \mathfrak{P} be a prime ideal of S, then

$$arepsilon_{\mathfrak{P}}(x) = \left\{egin{array}{ccc} 0 & x \in \mathfrak{P} \ 1 & x \in S - \mathfrak{P} \end{array}
ight.$$

is a character of S.

Proposition C. Let e be an idempotent of S, then $\chi(e)=0$ or $\chi(e)=1$.

Proposition D. The set \hat{S} of all characters of S is a commutative semi-group with 0 and a unit.

For χ, ψ of \hat{S} , the product $\chi\psi$ is defined $\chi\psi(a) = \chi(a)\psi(a)$ for all $a \in S$.

Proposition E. The character $\varepsilon_{\mathfrak{P}}(x)$ for a prime ideal \mathfrak{P} is an idempotent of \hat{S} .

Proposition F. Let \mathfrak{P} be a prime ideal of S. The set of all characters which vanish just on \mathfrak{P} forms a group $\hat{G}_{\mathfrak{P}}$ with $\varepsilon_{\mathfrak{P}}$ as the unit element (see S. Schwarz [4], p. 226).

Proposition G. \hat{S} can be written as a sum of disjoint groups $\hat{G}_{\mathfrak{B}}$

K. Iséki

for all prime ideals and the set G_{ϕ} of all non-vanishing characters.

Proposition H. Any ideal of \hat{S} is closed.

Proof. By Proposition G, \hat{S} is a set sum of disjoint groups $G_{\mathfrak{P}}$. Let \mathfrak{A} be an ideal of \hat{S} , and let χ be an element of \mathfrak{A} , then there is a group $G_{\mathfrak{P}}$ containing χ and hence $G_{\mathfrak{P}}\chi \subset \mathfrak{A}$. Since $G_{\mathfrak{P}}$ is a group, $G_{\mathfrak{P}}\chi = G_{\mathfrak{P}}$. Therefore $G_{\mathfrak{P}} \subseteq \mathfrak{A}$. Hence \mathfrak{A} is written as a set sum of some $G_{\mathfrak{P}}$. Let χ be an element of \mathfrak{A} , then $\chi^n \in \mathfrak{A}$ for some n. Therefore there is a group $G_{\mathfrak{P}}$ containing χ^n . If $\chi \in G_{\mathfrak{P}'}$ and $\mathfrak{P} \neq \mathfrak{P}'$, then $\chi^n \in G_{\mathfrak{P}'}$. Hence $\chi^n \in G_{\mathfrak{P}}$. This shows that $\chi^n \in G_{\mathfrak{P}}$ implies $\chi \in G_{\mathfrak{P}}$. Hence $\chi \in \mathfrak{A}$. Therefore \mathfrak{A} is closed.

In his paper [5], S. Schwarz has studied the structures of a character of a commutative finite semi-group. We shall generalize his results to some general classes containing commutative finite semi-groups.

Let S be a commutative periodic semi-group with a least idempotent. Following S. Schwarz [5], we shall define a conjugate class. Let $G^{(\alpha)}$ be the maximal subgroup of $K^{(\alpha)}$ for an idempotent e_{α} . For a of $G^{(\alpha)}$, the set T_{α} of all elements x of $K^{(\alpha)}$ such that $xe_{\alpha}=a$ is called a *conjugate class* of S. The semi-group S is a set sum of disjoint conjugate classes.

Let a, b be different elements of S. Every $K^{(a)}$ is the sum of some conjugate classes.

Suppose that $a, b \in K^{(\alpha)}$, then $ae_a \neq be_a$. We shall divide the set E of all idempotents with disjoint classes as follows: let $E_1 = \{e \mid ee_a = e_a\}$. $E_2 = \{e \mid ee_a \neq e_a\}, \text{ then the sets } E_1, E_2 \text{ are disjoint and } E = E_1 \cup E_2. \text{ We}$ shall show that E_2 is a prime ideal of E. If e, e' are in E_1 , then $ee_a = e_a$ and $e'e_a = e_a$, hence $ee'e_a = ee_a = e_a$. Therefore $ee' \in E_1$ and hence E_1 is a semi-group. To prove that E_2 is an ideal, let $e \in E_2$, $e' \in E$, then $ee_{\alpha} \neq e_{\alpha}$. To prove $ee'e_{\alpha} \neq e_{\alpha}$, suppose $ee'e_{\alpha} = e_{\alpha}$, then we have $ee_a = eee'e_a = ee'e_a = e_a$, which is a contradiction to $ee_a \neq e_a$. Hence E_2 is an ideal of E. Therefore E_2 is a prime ideal of E. Hence $\mathfrak{P} = \bigcup K^{(\mathfrak{p})}$ is a prime ideal of S, by Theorem 5. From $K^{(\alpha)} \ni a, b, b$ $e_{\beta} \in E_2$ we have $ae_{\alpha}, be_{\alpha} \in G^{(\alpha)}$. Since $G^{(\alpha)}$ is a discrete commutative group, there is a character $\chi(x)$ of $G^{(\alpha)}$ such that $\chi(ae_{\alpha}) \neq \chi(be_{\alpha})$. Clearly $\chi(e_{\alpha}) \neq 0$. Let

$$\psi(x) = \begin{cases} 0 & x \in \mathfrak{P} \\ \chi(xe_{\alpha}) & x \in K^{(\alpha)}, \end{cases}$$

since e_{α} is a least idempotent of E_1 , and S is commutative, $x \to xe_{\alpha}$ $(x \in K^{(\beta)})$, and $e_{\beta} \in E_1$ is a homomorphic mapping from $K^{(\beta)}$ to $G^{(\alpha)}$, $\psi(x)$ is extended on $S - \mathfrak{P}$ by $\psi(x) = \psi(xe_{\alpha})$ $(x \in K^{(\beta)})$ and $e_{\beta} \in E_1$. Therefore $\psi(x)$ is a character of S and $\chi(a) \neq \chi(b)$. Contributions to the Theory of Semi-groups. IV

Next, we shall suppose $a \in K^{(\alpha)}$, $b \in K^{(\beta)}$ and $e_a \neq e_{\beta}$. If $e_a < e_{\beta}$, then $e_a = e_a e_{\beta}$, and let $E_1 = \{e \mid ee_{\beta} = e_{\beta}\}$, and $E_2 = E - E_1$. If $e_a \in E_1$, then $e_a e_{\beta} = e_{\beta}$ and hence $e_a = e_{\beta}$. Therefore $E_2 \ni e_a$. By the similar method stated above, we can show that $\mathfrak{P} = \bigcup_{e_T \in E_1} K^{(\tau)}$ is a prime ideal, and hence $e_a \in S - \mathfrak{P}$, $e_{\beta} \in \mathfrak{P}_{\beta}$. Let

$$\chi(x) = \begin{cases} 1 & \text{for } x \in \mathfrak{P} \\ 0 & \text{for } x \in S - \mathfrak{P}, \end{cases}$$

then $\chi(x)$ is a character of S and $\chi(a)=0, \chi(b)=1$.

If $e_a \langle e_{\beta}, e_{\beta} \langle e_{\alpha} \rangle$, let E_i be the set of all idempotents greater than e_{α} , i.e. $E_i = \{e \mid ee_{\alpha} = e_{\alpha}, e \in E\}$, then e_{β} is not contained in E_i . Therefore, by the above method, we can construct a character $\chi(x)$ of S such that $\chi(a)=1$ and $\chi(b)=0$. Therefore we have proved the following

Theorem 7. In any commutative periodic semi-group, for any two elements a, b from distinct conjugate classes, there is a character $\chi(x)$ of S such that $\chi(a) \neq \chi(b)$.

Theorem 7 is a generalisation of the result by S. Schwarz [5].

References

- [1] K. E. Aubert: Sur le radical de McCoy, C. R. Acad. Sci., Paris, 237, 10-12 (1953).
- [2] K. Iséki: Sur les demi-groupes, C. R. Acad. Sci., Paris, 236, 1524-1525 (1953).
- [3] K. Iséki: Contribution to the theory of semi-groups. I, II, Proc. Japan Acad., 32, 174-175, 225-227 (1956).
- [4] S. Schwarz: Teoriya karakterob kommutatibnih polugrupp, Czechoslovak Math. Jour., 4 (79), 219-247 (1954).
- [5] S. Schwarz: Karakteri kommutatibnih polugrupp kak funktii klassob, Czechoslovak Math. Jour., 4 (79), 291–295 (1954).
- [6] S. Schwarz: O nekotoroi sbyazi Galois b teorii karakterob polugrupp, Czechoslovak Math. Jour., 4 (79), 296-313 (1954).
- [7] G. Thierrin: Sur quelques propriétés de certaines classes de demi-groupes, C. R. Acad. Sci., Paris, 239, 1335-1337 (1954).