99. Notes on Topological Spaces. V. On Structure Spaces of Semiring

By Kiyoshi ISÉKI Kobe University (Comm. by K. KUNUGI, M.J.A., July 12, 1956)

The structure space of maximal ideals in a normed ring has been discussed by I. Gelfand and G. Silov [2]. Recently, the structure space of maximal ideals in a semiring has been considered by W. Slowikowski and W. Zawadowski [4] and the theory has generalized by the present author and Y. Miyanaga [3]. E. A. Behrens [1] has considered the relation of structure spaces formed by three special classes of ideals of a naring.

In this Note, we shall consider the structure space \mathfrak{P} of all prime ideals of a semiring A and the relation of \mathfrak{P} and the structure space \mathfrak{M} of all maximal ideals of A. Throughout the paper, we shall treat a commutative semiring A with a zero 0 and a unit 1. (For detail of the definition, see K. Iséki and Y. Miyanaga [3].)

An ideal P of A is *prime* if and only if $ab \in P$ implies $a \in P$ or $b \in P$. Since A has a unit 1, any maximal ideal is prime, therefore $\mathfrak{V} \supseteq \mathfrak{M}$.

To introduce a topology γ on \mathfrak{P} , we shall take $\gamma_x = \{P \mid x \in P, P \in \mathfrak{P}\}$ for every x of A as an open base of \mathfrak{P} . Then we have the following

Theorem 1. Let \mathfrak{A} be a subset of \mathfrak{P} , then

$$\overline{\mathfrak{A}} = \{ P' | \bigcap_{P \in \mathfrak{A}} P \subset P' \text{ and } P' \in \mathfrak{P} \},\$$

where $\overline{\mathfrak{A}}$ is the closure of \mathfrak{A} by the topology γ .

Proof. To prove that the $\overline{\mathfrak{A}}$ contains $\{P' \mid \bigcap_{P \in \mathfrak{A}} P \subset P', P' \in \mathfrak{P}\}$, let $P' \in \{P' \mid \bigcap_{P \in \mathfrak{A}} P \subset P', P' \in \mathfrak{A}\}$, and let γ_x be a neighbourhood of P', then $x \in P'$, and we have $x \in \bigcap_{P \in \mathfrak{A}} P$. Therefore, there is a prime ideal $P \in \mathfrak{A}$ such that P does not contain x and $\gamma_x \ni P$. This shows $P \in \overline{\mathfrak{A}}$.

If a prime ideal P' is not in $\{P'|_{\substack{P \in \mathfrak{A} \\ P \in \mathfrak{A}}} P \subset P', P' \in \mathfrak{A}\}$, then $\bigcap_{\substack{P \in \mathfrak{A} \\ P \in \mathfrak{A}}} P - P'$ is not empty. Hence, for $x \in \bigcap_{\substack{P \in \mathfrak{A} \\ P \in \mathfrak{A}}} P - P'$, we have $x \in P, P \in \mathfrak{A}$ and $x \in P'$. This shows $\gamma_x \ni P$, $P \in \mathfrak{A}$ and $\gamma_x \ni P'$. Therefore $\gamma_x \frown \mathfrak{A} = 0$ and hence $P' \in \overline{\mathfrak{A}}$. The proof is complete.

A similar argument for \mathfrak{M} relative to Γ -topology implies the following

Proposition. Let \mathfrak{A} be a subset of \mathfrak{M} , then

$$\overline{\mathfrak{A}} = \{ M' \mid \bigcap_{M \in \mathfrak{A}} M \subset M', and M' \in \mathfrak{M} \}$$

where $\bar{\mathfrak{A}}$ is the closure of \mathfrak{A} by the topology Γ .

The proposition has been also proved by W. Slowikowski and W. Zawadowski [4].

The closure operation $\mathfrak{A} \to \overline{\mathfrak{A}}$ of \mathfrak{P} satisfies the following relations:

- (1) $\mathfrak{A} \subseteq \overline{\mathfrak{A}}$
- $(2) \qquad \overline{\mathfrak{A}} = \overline{\mathfrak{A}}$
- $(3) \quad \overline{\mathfrak{A}} \smile \overline{\mathfrak{B}} = \overline{\mathfrak{A}} \smile \mathfrak{B}.$

We shall prove only the last relation (3). By Theorem 1, $\mathfrak{A} \subset \mathfrak{B}$ implies $\mathfrak{A} \subset \mathfrak{B}$, and hence $\mathfrak{A} \subset \mathfrak{B} \subset \mathfrak{A} \subset \mathfrak{B}$. Let $P \in \mathfrak{A} \subset \mathfrak{B}$, then $P \in \mathfrak{A}$ and $P \in \mathfrak{B}$. Hence $P \Rightarrow \bigcap_{P' \in \mathfrak{A}} P' = P_{\mathfrak{A}}$ and $P \Rightarrow \bigcap_{P' \in \mathfrak{B}} P' = P_{\mathfrak{B}}$. The sets $\mathfrak{B}_{\mathfrak{A}}$ and $\mathfrak{B}_{\mathfrak{B}}$ are ideals. If $P_{\mathfrak{A}} P_{\mathfrak{B}} \subset P$, for any elements a, b such that $a \in P_{\mathfrak{A}} - P$, $b \in P_{\mathfrak{B}} - P$, we have $ab \in P$ and since P is a prime ideal, $a \in P$ or $b \in P$, which is a contradiction. Therefore $P \Rightarrow P_{\mathfrak{A}} \cdot P_{\mathfrak{B}} \supseteq P_{\mathfrak{A}} \cap P_{\mathfrak{B}} = P_{\mathfrak{A} \cup \mathfrak{B}}$. Hence $P \in \mathfrak{A} \subseteq \mathfrak{A}$.

Theorem 2. The topological space \mathfrak{P} is a T_0 -space.

Proof. It is sufficient to prove that $(\overline{P_1})=(\overline{P_2})$ implies $P_1=P_2$. By $P_2 \in (\overline{P_1})$, then $P_2 \supset P_1$. Similarly $P_1 \supset P_2$ and we have $P_1=P_2$. We can easily prove the following

Theorem 3. Every prime ideal is maximal, if and only if the topological space \mathfrak{P} is a T_1 -space.

In our previous Note [3], we have proved the following

Theorem 4. The topological space \mathfrak{M}_{Γ} is a compact T_1 -space.

Now we shall prove that \mathfrak{P} is a compact space. Let \mathfrak{A}_{λ} be a family of closed sets such that $\bigcap_{\lambda} \mathfrak{A}_{\lambda} = 0$, then we have $\Sigma P_{\mathfrak{A}_{\lambda}} = A$, where $P_{\mathfrak{A}_{\lambda}} = \bigcap_{P \in \mathfrak{A}_{\lambda}} P$. Suppose that $\Sigma P_{\mathfrak{A}_{\lambda}} \neq A$, then there is a maximal ideal M containing $\Sigma P_{\mathfrak{A}_{\lambda}}$. Therefore $\Sigma P_{\mathfrak{A}_{\lambda}} \subset M$ for every λ . Hence $\mathfrak{A}_{\lambda} \ni M$ for every λ , and we have $\bigcap_{\lambda} \mathfrak{A}_{\lambda} \ni M$, which is a contradiction. By $\Sigma P_{\mathfrak{A}_{\lambda}} = A$, the unit 1 may be expressed by a form $a_1 + a_2 + \cdots + a_n = 1$, $a_i \in P_{\mathfrak{A}_{\lambda_i}}$ ($i=1, 2, \cdots, n$). Hence $A = \sum_{i=1}^n P_{\mathfrak{A}_{\lambda_i}}$. If $\bigcap_{i=1}^n \mathfrak{A}_{\lambda_i} \neq 0$, then for a prime ideal P of $\bigcap_{i=1}^n \mathfrak{A}_{\lambda_i}$, we have $P \supset P_{\mathfrak{A}_{\lambda_i}}$ ($i=1, 2, \cdots, n$) and hence $P \supset \sum_{i=1}^n P_{\mathfrak{A}_{\lambda_i}}$. Therefore we have $\bigcap_{i=1}^n \mathfrak{A}_{\lambda_i} = 0$. Hence we have the following

Theorem 5. The topological space \mathfrak{P} is a compact T_1 -space.

Definition 1. By the \mathfrak{P} -radical $r(\mathfrak{P})$ of A, we mean the intersection of all prime ideals of A, i.e. $\bigcap_{P \in \mathfrak{P}} P$. By the \mathfrak{M} -radical $r(\mathfrak{M})$

No. 7]

of A, we mean the intersection of all maximal ideals of A, i.e. $\bigcap_{M \in \mathcal{M}} M$.

From $\mathfrak{M} \subseteq \mathfrak{P}$, we have $r(\mathfrak{P}) \subseteq r(\mathfrak{M})$. Next we shall give a topological condition to be $r(\mathfrak{P})=r(\mathfrak{M})$.

Theorem 6. The subset \mathfrak{M} of \mathfrak{P} is dense in \mathfrak{P} , if and only if, $r(\mathfrak{P})=r(\mathfrak{M})$.

Proof. Let $\overline{\mathfrak{M}} = \mathfrak{P}$ for the topology γ , then we have

$$\{P \mid \bigcap_{M \in \mathfrak{M}} M \subset P\} = \mathfrak{P}$$

Hence

$$r(\mathfrak{M}) = \bigcap_{M \in \mathfrak{M}} M \subseteq \bigcap_{P \in \mathfrak{P}} P = r(\mathfrak{P}).$$

By the remark above, $r(\mathfrak{M}) \supseteq r(\mathfrak{P})$. Therefore $r(\mathfrak{M}) = r(\mathfrak{P})$.

Conversely, if $P \in \mathfrak{P} - \overline{\mathfrak{M}}$, then $P \in \mathfrak{P}$ and $P \in \overline{\mathfrak{M}}$. Therefore, there is a neighbourhood γ_x of P such that $\gamma_x \cap \mathfrak{M} = 0$. Hence $r(\mathfrak{P}) = \bigcap_{P \in \mathfrak{P}} P$ is a proper subset of $\bigcap_{\mathfrak{M} \in \mathfrak{M}} \mathcal{M}$. Therefore $r(\mathfrak{P}) \neq r(\mathfrak{M})$, which completes the proof.

Definition 2. If $r(\mathfrak{M})=0$, A is said to be semi-simple.

From Theorem 6, we have the following

Theorem 7. If A is semi-simple, \mathfrak{M} is dense in \mathfrak{P} .

Definition 3. If $r(\mathfrak{P})$ is the zero-ideal (0), A is said to be *p*-semi-simple.

Then we shall prove the following

Theorem 8. Let A be a semi-simple semiring. A is the direct sum of two semi-simple semirings, if and only if \mathfrak{M} is separated.

Theorem 9. Let A be a p-semi-simple semiring. A is the direct sum of two p-semi-simple semirings, if and only if \mathfrak{P} is separated.

The Proof of Theorem 9. Let A be the direct sum of p-semisimple semirings A_1 and A_2 , i.e. $A = A_1 \bigoplus A_2$. Let $\mathfrak{A}_i = \{P | A_i \subseteq P, P \in \mathfrak{P}\}$, then $\mathfrak{A}_1, \mathfrak{A}_2$ are closed in \mathfrak{P} . Since A_i is p-semi-simple, $A_i = \bigcap_{P \in \mathfrak{A}_i} P$ $(=P_{\mathfrak{A}_i})$ and hence

$$A = A_1 \oplus A_2 = P_{\mathfrak{A}_1} \oplus P_{\mathfrak{A}_2}.$$

Therefore $\mathfrak{A}_1 \frown \mathfrak{A}_2 = 0$. To prove that $\mathfrak{P} = \mathfrak{A}_1 \smile \mathfrak{A}_2$, if there is a prime ideal P of \mathfrak{P} such that $P \in \mathfrak{A}_1$ and $P \in \mathfrak{A}_2$, then P does not contain A_1 and A_2 . On the other hand, $A_1 \cdot A_2 \subseteq A_1 \frown A_2 = (0) \subseteq P$, hence $A_1 \subseteq P$ or $A_2 \subseteq P$, which is a contradiction.

Conversely, let $\mathfrak{P}=\mathfrak{A}_1 \smile \mathfrak{A}_2$, $\mathfrak{A}_1 \frown \mathfrak{A}_2 = \phi$ and let $\mathfrak{A}_1, \mathfrak{A}_2$ be non-empty and closed in \mathfrak{P} , then $A_i = \bigcap_{P \in \mathfrak{A}_i} P$ (i=1,2) are ideals, and since A is p-semi-simple, $A_1 \frown A_2 = (0)$ and we have $A_1 \oplus A_2 = A$. From $A_i = \bigcap_{P \in \mathfrak{A}_i} P$, each A_i is p-semi-simple. The proof is complete.

We can prove Theorem 8 by a similar argument.

We shall discuss the structure space \mathfrak{S} of all strongly irreducible ideals of A in a later paper.

References

- E. A. Behrens: Ein topologischer Beitrag zur Strukturtheorie nichtassoziativer Ringe, Math. Ann., 129, 297-303 (1955).
- [2] I. Gelfand und G. Silov: Über verschiedene Methoden der Einführung der Topologie in die Menge der maximalen Ideale eines normierten Ringes, Mat. Sbornik, 9 (51), 59-73 (1941).
- [3] K. Iséki and Y. Miyanaga: Notes on topological spaces. III. On space of maximal ideals of semiring, Proc. Japan Acad., 32, 325–328 (1956).
- [4] W. Slowikowski and W. Zawadowski: A generalisation of maximal ideals method of Stone-Gelfand, Fund. Math., 42, 216-231 (1955).